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ABSTRACT

The objective of the Project Fire study reported herein is

to predict theoretically the state of the gas in the flow field sur-

rounding an Apollo type vehicle entering the earth's atmosphere at

hypersonic velocity and to predict the related radiative and con-

vective heating rates and their distribution over the body. In

this study, two points on a nominal re-entry trajectory are con-

sidered. In the first case, the aerodynamic velocity is 34,582 fps

and the altitude is 171,111 feet. Under these conditions, the

chemistry is expected to be in equilibrium over the blunt body

and the flow field is analyzed by Dorodnitsyn's method of integral

reiations as applied to the hypersonic blunt body problem. The flow

over the back of the body is computed by the method of characteristics

assuming attached flow. The second point on the trajectory is at an

aerodynamic velocity of 37,439 fps and an altitude of 259,113 feet.

The flow field in this case is not in equilibrium and the solution

takes full account of the nonisentropic interaction between the

chemical reactions and the flow field. The flow equations are

again made manageable through the method of integral relations;

chemical kinetic and vibrational non-equilibrium equations are

integrated directly. Based on the flow field calculations the _

convective and radiative heat fluxes are determined.
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PROJECT FIRE FLOW FIELD PREDICTION AND ANALYSIS

PREFACE

In order to expand the technical base upon which the Project Fire

reentry heating data will be analyzed, contracts were awarded to the

Lockheed Missiles and Space Company, the General Electric Company,

and the Philo Corporation (Contracts NAS1-3417, 3418 and B419 respec-

tively) to compute the flow field about the reentry package along with
the associated magnlt_'de and distribution of radiative and convective

heating for selected points on the nominal reentry trajectory, qq_e

contracts, _hich were awarded as a result of competitive bidding,

provided for independent analyses embracing a number of different

methods. Copies of the computing machine programs used have been

supplied to NASA.

All contractors performed the necessary computations for the con-
ditlons defined at the time the maximum radiative heating rate is

expected (t = 25 seconds, V = 34,582 ft/sec, h = 171,611 ft, and

= 0°). Lockheed also made calculations for a 5° angle of attack •

case. In addition, calculations were made by Lockheed and Philco for

the point at which the maximum radiation from nonequilibrlum gas

chemistry is expected (t = 15 seconds, V = 37,439 ft/sec, h _ 259,11B

ft, and m = 0°). The two above conditions were obtained from a pre-

flight trajectory and do not reflect the exact conditions for Flight 1.

These independent predictions made for identical conditions of

reentry-body size and shape, altitude, and velocity are expected to

be very useful not only in the interpretation of the Project Fire data

but also to provide, for the first time, a direct comparison between
the different theoretical approaches employed.

Copies of the reports by each of the three contractors have been

revlewe_byLRC.
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SECTION 1

INTRODUCTI ON

The objective of the Project Fire study reported herein is

to predict theoretically the state of the gas in the flow field sur-

rounding an Apollo type vehicle entering the earth's atmosphere at

hypersonic velocity and to predict the related radiative and con-

vective heating rates and their distribution over the body. In this

study, two points on a nominal re-entry trajectory are considered.

In the first case, the aerodynamic velocity is 34,582 fps and the

altitude is 171,111 feet. Under these conditions, the chemistry is

expected to be in equilibrium over the blunt body and the flow field

is analyzed by Dorodnitsyn's method of integral relations as applied

to the hypersonic blunt body problem. The extent of any non-equilibrium

region at this flow condition was estimated to be less than 3% of the

shock layer based on the normal shock studies of Alle%Rose, and Camm. (I'I)*

Properties of the gas in equilibrium condition are determined by analytical

expressions which have been fitted to the thermochemical equilibrium gas

tables. Since the solution for Case I involves the determination of the

heat flux over the entire body, the portion of the flow beyond the corner

was computed by the method of characteristics. The expansion at this

corner is very rapid, and thus it was assumed that the chemistry became

frozen along a ray normal to the body at the corner, but variations in

composition and the resulting frozen heat capacity ratio along this line

were considered in the frozen characteristic solution. The second point

on the trajectory is at an aerodynamic velocity of 37,439 fps and an

altitude of 259,113 feet. The flow field in this case is not in equilibrium

and the solution takes full account of the nonisentropic interaction between

the chemical reactions and the flow field. The flow equations are again

made manageable through the method of integral relations; chemical kinetic

*Superscripts refer to references.
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and vibrational non-equilibrium equations are integrated directly. To

make a proper description of the flow field and, especially, of the

radiative species, a critical evaluation of the best available rate data

and extrapolation for important chemical reactions have been made°

In the calculation of radiative heating, a preliminary examina-

tion of the radiative properties of air at these temperatures and densities

indicates that the air will be optically thin so that reabsorption of

the radiation need not be included. After completing the computation

this was not found to be true at all wavelengths. Radiation mechanisms

that are considered include molecular band transitions and continuum

radiation resulting from electron-neutral and electron-ion free-free

transitions, photo attachment of electrons to oxygen atoms, and electron-

ion free-bound (deionization) transitions. The spectral distribution of

-I
radiative flux is determined in 2000 cm intervals and integrated over

all wave numbers at the selected vehicle locations to obtain the local

total radiative heat flux. The convective heating at the stagnation

point is calculated by the analysis of Hoshizaki. (1"2) The laminar flow

heating distribution is calculated by a step-wise solution of Lees'

technique (1"3)" while the turbulent boundary layer heating is calculated

by the method of Rose, Probstein and Adams. (1"4) For the solutions in-

cluded, the flow was laminar throughout.

One of the most difficult aspects of the Project Fire Case I

and III problem was the prediction of the subsonic and transonic flow

fields. The equations of motion describing the inviscid adiabatic hyper-

sonic flow over a blunt body are of the mixed elliptic-hyperbolic type and

are exceedingly difficult to solve. The types of numerical solutions that

can be used to solve the blunt body problem are usually classified as

inverse and direct methods. (1"5) In the inverse method, the shock shape

is initially assumed known and the flow variables are expanded in a

series and integrated from the shock to points in the flow field

corresponding to the body streamline. Although the inverse solution

is exact, the problems of convergence of the series and of the extreme

sensitivity of the resulting body shape to the assumed shock shape have

limited the application of the method. The source of the convergence

problem has been identified and can usually be avoided, (1"5) but the

problem of assuming a shock shape to give a complicated body geometry

such as the sharp or abruptly rounded shoulder associated with the

-2-



Project Fire re-entry body is presently not possible. It is this abruptly
rounded corner body characteristic that necessitates the use of the direct

method in theProject Fire problem. In the direct method, the body shape

is specified and the shock shape and shock layer properties are calculated.

Although a numberof direct methods have been proposed in the literature

(i.eo, streamtube-continuity iteration methods and relaxation techniques),

perhaps the most successful and powerful direct meansof handling these
(1.6)

equations is by the method of integral relations due to Dorodnitsyn.

This method is particularly useful for bodies with a sharp or abruptly

rounded shoulder,and, hence, has been selected to calculate the Project

Fire thermochemical equilibrium and non-equilibrium flow fields. Before

proceeding to the description of each of these programs a few general
remarks about the method of integral rela_ons as applied to the blunt

body problem will be made.
The method of integral relations is used to transform the

partial differential flow equations to a system of approximate ordinary
differential equations. This transformation is accomplished by dividing

the region between the shock and the body into N strips and integrating

the partial differential equations with respect to the space variable

in the strip direction. The integrands are then approximated by inter-

polation formulae involving the integrand values at the strip boundaries
and a set of ordinary differential equations is obtained. To minimize

the errors introduced by the integral approximations, the strips should

be taken in the direction in which the flow quantities have the least

variation, since the values of the flow variables obtained in the inter-

polation direction are less accurate than those calculated in the direction

of integration. In hypersonic equilibrium and frozen blunt body flows,

the major property variation occurs along the body rather than across

the shock layer, and, hence, the strips should be taken normal to the

body (SchemeI). A second feature of the integral relation hypersonic
flow field solutions is that a one strip approximation usually gives

quite accurate results. (1"7) Thus, an accurate thermochemical equilibrium

hypersonic blunt body flow field solution can be obtained by approximating

the region between the shock and the body as a single strip. In the non-

equilibrium solution, on the other hand, the flow properties vary con-
siderably from the shock to the body, and, hence there is strong

-3-



justification for taking the strips in the body direction (SchemeII)
rather than normal to the body (Schemei).(1.7) The first approximation

non-equilibrium solution reported here, however, utilizes a single strip

taken in the direction normal to the body. There is somejustification

for this assumption in the single strip approximation, however, since

one need only integrate the flow and chemical kinetic rate equations

along the axis of symmetryand body streamlines and a considerable

simplification is obtained with little sacrifice in accuracy. The

axis of symmetryintegration quite accurately establishes the shock

layer flow properties and the fact that all integrations are accomplished

on streamlines minimizes the numerical integration stability problems
associated with the finite chemical reactions.

A description of the analytical methods as well as the
numerical results for the two cases studied are presented in this report.

-4-



SECTION 2

DISCUSSION OF ANALYSES

A description of the analytical methods utilized in the

determination of the Project Fire Case I (thermochemical equilibrium)

and Case III (non-equillbrlum) solutions is presented in the following

sections. These analyses developed for both equilibrium and non-equilibrium

conditions include the determination of the inviscid subsonic flow field

for an axisymmetric, hypersonic blunt body by the method of integral relations,

the determination of the non-equilibrium gas properties, the computation

of the gas radiative properties, and the computation of the convective heat

flux. In addition a discussion of the so called "second order effects"

is included.

2.1 EQUILIBRIUM FLOW FIELD PROGRAM

There are a number of important blunt body re-entry trajectories

in which the subsonic region of the flow field is in thermochemical equi-

librium (i.e., ICBM and Lunar Re-entries) and, hence, in which equilibrium

air properties must be utilized in describing the flow field. Method of

integral relations equilibrium blunt body solutions have recently been re-

ported in the literature by Belotserkovskii (2"3) and Shih and Baron. (2°4)

The integral relation equations developed by both authors are essentially

the same, and they differ only in the methods of evaluating the equilibrium

properties. Belotserkovskil utilized the equilibrium air equation of state

developed by Naumova (2"5) which gives approximate analytical equations

relating enthalpy and density to pressure and temperature over a large

property range. Shlh and Baron, on the other hand, chose to evaluate the

equilibrium air properties directly from the partition functions, but to

simplify the calculation did not include ionization. The equilibrium blunt

body solution developed in this paper is a first approximation solution based

largely on Belotserkovskii's approach, with attention given to particular

applications needed here. In the first approximation the basic dependent

variables are the surface and shock velocity, pressure, temperature, shock

detachment distance and shock angle. The equations for these unknowns are

derived from two integral relations (obtained from a modified radial momentum
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equation and the continuity equation), from the shock equations and the

thermodynamic relations set out in Naumova's tables. These tables are

also needed to determine thermodynamic variables behind the shock.

Two points in the flow field require special consideration,

namely the point behind the normal shock and the stagnation point. At

the normal shock point the shock relations do not give the thermodynamic

quantities explicitly and these must be found by iteration. A plausible

value for density is first assumed. The mass conservation condition then

gives the normal velocity, the momentum conservation condition the pressure,

and the energy equations the enthalpy. The temperature is found implicitly

from Naumova's formula. The resulting value and the pressure are then sub-

stituted in Naumova's formula for the density, which should agree with the

assumed value. At the stagnation point the entropy is known (equal to the

value at the normal shock point) and the enthalpy has the stagnation value

ahead of the shock. Both these functions can be expressed in terms of pres-

sure and temperature by Naumova's tables and this yields two implicit equa-

tions for the stagnation values, which are determined by an iterative process.

For a given body and flight condition the shock detachment distance

on the axis must be chosen to satisfy one of two conditions at the body sonic

point. If the body is smooth the sonic point must be located so that the

integral curve for the surface velocity is regular there. If the body has

a sharp corner then the solution must be adjusted to attain sonic conditions

at the corner. In the latter case the surface velocity has a square root

type singularity at the point. Following Belotserkovskii's recommendations

the original procedure for finding the correct solutions on smooth contours

has been considerably simplified. Previously it was necessary to stop a

given integration ahead of the sonic point and extrapolate the solution up

to that point by means of series expansions. These took time and labor to

construct and had to be evaluated for each choice of detachment distance,

until that corresponding to the correct saddle point conditions at the sonic

point had been determined. Under the revised procedure, as applied to the

first approximation, the integration corresponding to each detachment distance

is continued until either the velocity derivative changes sign or, until

it attains the value unity. The desired integration always lies between

those satisfying these two conditions so that progressively closer lower

upper bounds on the detachment distance can be found. No extrapolation

and series expansions are required to carry out the new scheme. The various

aspects of the program are described in the following paragraphs.
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The description of the equilibrium flow field program is divided

into four major parts: (i) basic flow equations, (2) thermochemical

equilibrium gas properties, (3) boundary conditions and the numerical

integration procedure, and (4) shock layer properties.

2.1.1o Basic Flow Equations

The steady adiabatic inviscid flow equations have been written in

streamline or boundary layer coordinates. In this orthogonal coordinate

system, which is shown in Figure i, the body is assumed to be axially

symmetric, "s" is the arc length along the body measured from the axis of

symmetry and "n" is the normal to the body measured from the body surface.

We also use the coordinates, y, _, where y is the distance from the axis

of symmetry to the point (s,n), and _ is the angle between the tangent to

the body and the axis of 8ymmetry.

The flow variables u and v are the velocity components in the n

and s directions respectively. The thermodynamic variables, p, _ , h, S, T

denote pressure, density, enthalpy, specific entropy and temperature

respectively. The angle between the shock wave and the axis of symmetry

is denoted by _ . The flow quantities are in dimensionless form with

velocities referred to the maximum velocity, qmax' the density p referred

to the freestream density, _ ; the pressure p referred to twice the dynamic

head, _ qm' the temperature T referred to q /Rm , the enthalpy, h,

-referred to the stagnation enthalpy, /2, and entropy S referred to P_s /2.

Here R_ = R /MW_ where R is the universal gas constant and MW_ is the
O O

molecular weight of the freestream gas. All lengths are made dimensionaless

by referring them to the body radius of curvature at the stagnation point.

The flow equations utilized in the equilibrium program are con-

tinuity equation, the n-momentum equation, Bernoulli's equation or the energy

equation on a streamline, the equation of state and the conservation of

entropy equation.

The continuity equation in boundary layer coordinates is (2"II)

(ypv) + (ypu [I =0

while the n-momentum equation is

2
_u n _u v

v _s + (I + _)u -_-_ - R

n

_
._ d'n

2.1

2.2
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The first step in utilizing the method of integral relations

is to convert the continuity and n-momentum equation to divergence form.

The continuity equation is already in proper form and the n-momentum equa-

tion is transformed to the divergence form by combining it with the continuity

equation. To simplify the notation, the continuity and n-momentum equation

in divergence form are expressed as

and

+  {AL} 0
_s _ n =

2°3

__._Z+ _(AH) = y 2.4
s _ n

where the new variables are defined as

Z = yp uv

H = y (p + 2u 2)

wt= y p v

L=yp u

Y = (G/R) + (Ap cos @) 2.5

G = y (p + _ v 2)

A = 1 + n/R

R = body radius of curvature = - ds/d_.

In the analysis which follows, suffix 0 refers to conditions on

the body, while suffix 1 refers to conditions immediately behind the shock.

The distance of a general point from the axis of symmetry is given by

Y = Yo (s) + n cos0 2.6

Before deriving the integral relations we change the independent

variables in Eqs. 2#3, 2.4 from s, n, to s, _ where

n =je4E 2.7

Then, i,

n _ _
2°8

*Primed quantities denote differentiation with respect to s.
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The transformed equations 2.3 and 2°4 are

2.9

!

_s _f __ AL
+ (-2-)= 0 2.10

!

6 _9 AH@s_Z . _ (-_-- Z) +--_--f (_---) = Y 2.11

Since _ is the distance from the body to the shock measured along the

normal, then _ = 0 on the body and _ -- i on the shock. To apply the

method of integral relations in the first approximation, interpolate

linearly for ./1_ , Z and Y between the body and the shock using the formulae

+ (./_ _ 2.12wi =./to 1 " "to)

Z= Z + - _ 2.13o (Zl Zo)

Y = Y + _ 2 14o (YI " Yo )

then substitute in 2.10 and 2.11 and integrate with respect to [ from 0 to i.

We obtain the relations

! !

d o

Tss (%(-'io +'/11)) -/-__,l 6i + -Z- (%(Jto+ ]tl))

AIL 1 - A LOO
+ = 0 2.15

6

!

£
+Zl)) -_-z 1+ (%(z + Zl))

AIH 1 - A HO O

+ _ -- ½(YI + Yo ) 2.16

These may be written

!
! !

2

-9-
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!

' E Zl 2Zl - _ - _'- (AI HI " AoHo) + (YI + Yo ) 2.18

!

where Z = Z = 0
O O

The differential equations 2.17 and 2o18 can be expressed entirely

in terms of the dependent variables _ , _- and v
O

The differential equation for E is given by the geometrical relation

,cA

_ds = AI tan ( _'- _) 2.19

The differential equation for v is derived from the definition
O

v 2.20-Ao --Yo _o o

! !
! !

= v + yo )O v + dO 2.21Then -/_ Yo P o o o o YoVo o
O

Since the body surface is a streamline, we know from the Bernoulli equation

that

dPo = - j°oVodVo 2.22

and from the entropy equation that

dS = 0 2.23
O

The speed of sound, ao, is given as

2 dPo
a = --

o dpo

Combining these equations, we obtain the equation

= P°v° dv
dPo 2 o

a
O

!

Substituting 2.21 for J_o,

the differential equation _or v is given as
O

2.24

2.25

-i0-



I
!

_/to Yo poVo

' YoPo YoPo
V
o 2

v
o

2
a

o

!

where Yo is specified by the body geometry, and ao,

on the body streamline, is given by a

2.26

the speed of sound

2 pohT
a =

o Dpo+ p
T

where D =_ph T - JOTh p
!

-_o is determined from the continuity integral relation differential

equation 2.17 where

2.27

!

' ' E 2

_./I_ = "./[ + _'-- (-/[ - -/L) - _- (AIL I " NoLo )
o 1 1 o

!

To evaluate_/[ , we utilize the definition
i

Then

Jl

= Yl jo iVl
i

' dPl d_

= Yl jo iVl + YlVl d&r ds + Yl jOl

dv 1

ds .)°ivI ' dE Eo @ cos_ _ + _-- sin

dPl d_
+ YlVl dO" ds

d@"

+ Yl _ l(Vlds
u I

R )
2.28

and finally

' d_ _d)_l Id_-11 = 21Vlcos¢_+yl Vl_ + PIvI
1

' PI

+ JOlVlY ° +-_- ( 6 vI sinO- YlUl )
2.29

The final form of the equation is

dv E
.__._= o 2.30
ds F

O

*The subscript T(qr pldenotes partial differentiation with respect to T(or p)
while holding p for T) constant.
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where
l

('_ - Yo poVo )a 2
O

o
E = 2.31
o Yo Po

and

2 2
F = a - v 2.33

O O O

On the axis of symmetry, equation 2.31 is indeterminate and must be replaced

by the limiting form of the equation.

The limiting form of equation 2.31 is, when s = 0

I!

E = v a 2 34
O O "

To evaluate o' we use equation 2.17. When s = 0 we have

_ = _ _ - _- (ALL1)' - (AoLo)
1 o

2.35

Now AIL 1 = A 1 _lUlYl

!

Hence (AILI) = A I J_lUlYl
s=0

where Yl = Yo + _ cos_

!

so that (yl) = i - _ (d_/dS)s=0
s=0

2

= A 1 3°lUlHence (AILI)'
s=0

= i + 6/R = A I

Similarly (AoLo)' = poUo = 0
s=0

Equation 2.35 then reduces to

,, ,, 2A2l
_i = - Fi _°lUl

o i
2.36

Now, when s = 0

t!

,I

_/L -- zI /u1
1

II

Here Z 1 is determined from equation 2.18, namely

2.37

" 2 _(AIHI )ZI = _ _- - (AoHo) + + Yo
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2 plUl 2)where (AIHI)' = A 1 (Pl ÷

(AoHo) ' = Po

!

Y1 = 2AIPl/R

!

y = 2Po/R
O

Hence

Z1 : - _- (Pl + plUl

11

The equation for .._ is then
o

[!

= - (Z 1 ) - 2A /_"-A- o /u I 7°lUl

;!

where Z 1 is given by equation 2.38

From equation 2.34 and 2.30, when s = 0

2

+_ (AlP 1 + Po )
2.38

2.39

, Jio 2
F v = v a
o o o o

Hence, when s = 0

f!

dv _/i
o o

m _ m

ds 2 )O °

!!

I!

where -/_o is given by equation 2.39 and Z 1

2.40

is determined from equation 2.38.

In the present system of coordinates, the differential equation for

_'can be deducedfrom the n:momentum integral relation differential equation

2.18 and the shock boundary conditions. Since the body contour is a coordinate

line u = o,
O

Z = 0
o

Now Z I = Yl PlUlVl

so that
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' dZl 2.41

Z1 - ds

dYl d

- -- = (J°lulvl) + Yl 77 (plUlVl)

d£
dYl can be expressed in terms of _-s from equation 2.6, the definition
ds

d
of y. The term _s (_lUlVl) can be expressed in terms of _- using the

shock boundary condition. At this point we introduce equations relating

the boundary layer coordinate velocity components to the velocity components

qt ' qn tangential and normal to the shock.
g

Thus,

Ul = qt sin ( G-- _) - qn cos ( _- _) 2.42

g

Vl = qt cos ( _ - _) + qn sin ( _'- _)
g

2.43

The conditions across the shock are given by

Continuity

jOqn-- q_ sinO"
2.44

Momentum

2 )2Normal: p = p_ _qn + (q_ sin_ 2.45a

Tangential: qt = q_ cos#- 2.45b

g

Energy
2 2.46

h= 1 - q

In this derivation, p and T are assumed to be the independent properties

where h and _ are known functions of p and T. From the shock relations,

we find

dPl _ - q_ sin _ dqn/d_ 2.47a_-= 2

_-= (i/hT) _i - hp(dp/d_) - 2 qn(dqn/dG 2.47b

d_ I

= _p(dPl/d0- ) +

-14-

_T(dTl/d_ ) 2.48



 qtg
d_" " q_ sin_r" 2.49

dq
n =

dO"

q_ hT cos0"- qn(D¢[2 + JoT _i )

ph T - qn(DqsinO- + 2PTq n)
2.50

where D = _ph T - jOTh p

2l"

_I = q_ sin 2_"

_2 = _I - qn q_ cos O-

From equations 2.42 and 2.43

I dul dqn
d--_-= _°d¢_ sin( O- - _) -_-_-cos( O" - _

|

i + qn sin( of__ _) _ (d0" d_

dUl . d_ d_

or

d-T = Ul d-T - Vl "_-s

and

dVl d_" d__

_ : VI _--s + Ul as

i where

UI =_ dqnsin( O'- _) -_--cos( O"- _) + v I

I _ dqnVl = d_ cos( _- - 0) +7- sin( O-- 0) - uI

du dv

Substituting for _s and _s in equation 2.41, we find that

I ' . . dYl f dPl dO"

Z'l : IPlUlVl ) _ + YllUlVl d-_ ds

_ da" 2 d_7

+ p1Ul vl 77 + pIul ds_

I -15-

+ _q_cos( _ - _)

2.51

2.52

2.53

d_ 2 d___
+ _lUl UI d-_ - _iVl ds

2.54

2.55

2.56

2.57

2.58

2.59



Differentiating equation 2.6 with respect to "s", we obtain

--dYl= --dY°+ cos_ __d£_ sin_ __d_
ds ds ds ds

2.60

and solving equation 2.59 for d_-/ds, we find that

CdO" 1
ds B1

2.61

with

' d_

C I = ZI - plUlVl cos_ _-s -

dY o

plUlVl77-s

Ul) + _lUlVl _ sin
2.62

I

and Z 1 is given by integral relation equation 2.18

)= --+ U1 + u 1 V 2.63gl YI IVl d_ j°iVl 9°1

As was the case for the velocity derivative,'d ¢ /ds is indeterminate on

the axis of symmetry and the limiting form must be used.

Equation 2. 61, when s = 0, is written

!

d_ CI

ds
B I

Now, from 2.62, when s = 0

I

C 1 = Z 1

do" 2 2

A l]mlulv I _ + _ AlPlUl

From 2.63

BI = A I p lUlVI

Hence, when s = 0

I!

where Z 1

dO"

ds

11

ZI + 2(A I fflUl2)/Ro5

plUlVl2A 1

is again determined from equation 2.38.

2.64
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2.1.2. Thermochemical Equilibrium Gas Properties

The equation of state utilized in the equilibrium solution was

obtained from analytical functions of the thermodynamic properties of air

(2.5)
given by Naumova. The independent properties are temperature and

pressure and cover the property range of 300°K _ T _ 20,000°K and

.001 atm 4 P_ I000 arm. This property domain covers the environmental

conditions encountered by re-entry vehicles for an extensive range of

speeds and altitudes. This approximate equation of state includes

dissociation and ionization and correlates within one percent of results

obtained from a free-energy minimization thermochemical equilibrium

computer program (Ref. 2.6). This is one of the most useful equilibrium

real gas subroutines currently available in this country, not only because

of its high accuracy and wide range of gas properties, but because it re-

quires a very small amount of computer memory space and calculation time.

The details of the property analytic functions and the required

property derivatives are given in Appendix A and B respectively. The dif-

ferential equations describing the rate of change of the thermodynamic

properties along the shock and the body are given below.

The shock property differential equations are obtained from equa-

tions 2.47a and 2.47b and are given as

dPl _{2 do-
dqn d C-

sin_ d_ ds 2.65

and

dTl = (h_)_I hp(dp/d_r) - 2qn(dqn/d_r )I dsdO-
2.66

The body property differential equations are obtained from the Bernoulli

and energy equation on the body streamline and are given, as

dPo dv

ds " wOoVo ds
2.67

dT dv

= . i___ (2 a°ohp)Vo d--_ 2°68
ds h T

Once p and T have been found, the thermodynamic variables p and h are

determined from the equation of state.
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2.1.3. Boundar2 Conditions and Numerical Integration Procedure

In the first approximation integral relation equilibrium blunt

body solution, we have to solve the seven simultaneous first order non-

linear ordinary differential equations given by equations 2.19, 2.30, 2.61,

2.65, 2.66, 2.67 and 2.68. The dependent variables are _ _ , v PI' TI' ' O' '

Po' T and the independent variable is s. To complete the formulation ofo

the problem, the boundary conditions must be specified. In the equilibrium

blunt body problem, the values of _' Vo' PI' TI' Po' To are specified on

the axis of syn_metry where s = O. The detachment distance _ , however,

is not known initially and the final boundary condition is determined by

the sonic point on the body. Thus the blunt body flow equations represent

a two point boundary value problem in which the boundary conditions are

given on the axis of symmetry and at the sonic point. The sonic point

boundary conditions differ according to whether the prescribed body contour

is smooth, with continuous slope, or sharp with discontinuous slope. For

smooth corner bodies, the sonic point boundary condition requires a singular

solution that passes regularly through the singular sonic point on the body.

For sharp corner bodies in which the corner occurs before the smooth corner

sonic point, the boundary condition is that the flow be sonic at the corner.

The calculation procedures used to establish the required boundary conditions

are as follows:

Stagnation Streamline Boundary Conditions

At s = 0

= 17-/2

v =0
o

Normal Shock Properties

Pl and T I are determined from an iterative solution of the momentum,

2.44, energy 2.46 and state equations across a normal shock and this procedure

is described in detail in Appendix C.

Stagnation Point Properties

The stagnation point properties are uniquely determined by the

stagnation enthalpy which is given by the freestream conditions and the

stagnation streamline entropy which can be calculated from the normal shock

properties. The procedure for determining Po and To from ho and So is given

in Appendix C. The procedure for determining the entropy from the pressure

and temperature involves the evaluation of an integral equation which is

quite time consuming on the computer. A more efficient method of evaluating

the stagnation properties is obtained by noting that the properties between
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the normal shock and stagnation point do not change appreciably and, hence,

the compression process is characterized by a constant real gas isentropic

exponent. The pressure at the stagnation point is thus given in terms of

PI' J°l' qao , _ by the equation

3Po i 2 -3

w: 1+ + 2 _" +3--q7

Pl D _. el _ _ el 21

2.69

where the first three terms give the stagnation pressure to four significant

figures. Given the stagnation pressure and enthalpy, the stagnation temperature

is determined by an iterative, the procedure given in Normal Shock description

of Appendix Co

Sonic Point Boundar_ Conditions

Case (i_ Smooth Contour

Equation 2.30 has a saddle point singularity at the sonic

point on the body and the remaining condition needed to fix the solution

is that the integral curve for v should be regular at this point. This
o

condition determines the shock detachment distance _ on the axis. The

required regular solution is found by the following iterative procedure.

Firstly, estimate a plausible value of _ . With this and the other

known initial values on the axis of symmetry integrate equations 2.19, 2.3[b

2.61, 2.65, 2.6_ 2._ and 2.68 numerically (a fourth order Runge-Kutta

scheme was used in the present program) until either (a) E = 0 or (b)
O

F - E changes sign from positive to negative. If (a) is satisfied,
o o

increase _ by one unit in the last figure, or if (b) is satisified,

decrease _ by the same amount and repeat the integration. Continue until

two successive runs are obtained with one in category (a) and the other in

category (b) The corresponding values of _ are then upper and lower bounds

of the required detachment distance. The integration should now be carried

out with the mean of these two values. This run will also be in (a) or

(b) so that closer bounds on the true _ can be found. This procedure

can be continued to determine _ to any desired degree of accuracy. Once

this value of _ has been found the integration can be continued beyond

the saddle point as follows. Stop the numerical program one step ahead

of the estimated saddle point and use results upstream to extrapolate

-19-



values of the dependent variables one step beyond the point, then resume

the numerical integration.

Case (ii). Sharp Corner

In the sharp corner case the sonic point on the body is no longer

determined by regularity conditions but is fixed at the sharp corner. This

means that in Eq. 2.30 F = 0 at a fixed "s" and it is impossible simul-
o

taneously to satisfy the condition E° _ 0, so that dvo/ds has an infinite

derivative. It can be shown that v approaches the sonic speed in proportion
o

to the square root of the distance from the sonic poin_ 2"7) Accordingly,

for a plausible cholce of _ the integration of equations

2.19, 2.30, 2.61, 2.65, 2.66, 2.67 and 2.68 is continued until either

(a) E ° - 0 or (b) a - v < 0.I a . If case (a) applies reduce the detach-o O o

ment distance until a run in category (b) is obtained. For this run,

stop the integration at the first point where conditions (b) applies and

extrapolate a - v , using the square root law up to the point a - v = O.
O O O O

If this is upstream of the required point, repeat the integration with

an increased detachment distance. Correspondingly, if the point is down-

stream of the sharp corner, reduce the detachment distance. A few iterations

are sufficient to find the value of _$o giving sonic conditions at the sharp

corner.

2.1.4. Shock Layer Property Calculation

The first approximation integral relation solution completely

specifies the properties p, T, h, _, u and v at the shock and on the body,

but does not give the properties in the shock layer. Since there are six

unknown flow field properties p, T, h, _, u and v, six independent equations

are required. Although any combination of the conservation equations

and integral relation approximations could be selected, the simplest set

was selected for this program; namely, the linearized set of algebraic

equations for./_, _, and Y, and, the energy equation and the equation of

state. The required equations are:

_ y _u v _ _ (s)_ 2.70

2.71
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E_ce Y Y(P + pv2) (1 + f R(s)/ Yo(+ cos (s) - s) +

where Zl, ./il, J[o' Yo' YI' R, _, _ are all known functions of s.

h + v 2 + u 2 ffi i

jm - jo(p,T)

h = h (p,T)

y = Yo(S) +f_ (s) co,_(s)

where Yo(S), _(s) and #(s) are given functions of s.

unknowns are

2.72

Energy Equation 2.73a

Equation of State

Geometry 2.73b

Therefore, the

h, _O, p, T, v, u, y-f( f ,s)

A sketch of the body and shock geometry is shown in Figure i.

To solve the equations at a given point in the shock layer (s,_) an
J

iterative scheme will be used.

(a) For a given point in the shock layer (s, f ),

(b) Find u from

U z

zl(s)/

Jt_ (s) + (Al(S) -Ao(S))[

(c) Assume

v ,,Vo(S) + (Vl(S) - Vo(S))_

(d) Calculate

h from equation 2.73a

(e) Calculate p from equations 2.71 and 2.73b

(f) Find p and T given p and h from an iterative procedure using

the equation of state.
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(g) Calculate a new v from equation 2.72 where

2 R (s) _y (s) + (YI " Yo)f (i + _ _(s)v -- (y(s) o R (s) )_ - P--p cos _ (s

(h) Substitute this new value of v into step (d) and repeat the cycle

until v converges with 0.5%.

Wl_en s = O, these equations become indeterminant and the following equations

must be used.

(a)

(b)

Same

Ii

u_- ,, ;, jf-A-o + (./[- -/_o' where _[', ./If
functions of s.

(c) v = 0

2
(d) h-- i -u

Po + _Pl (i +&)- Po_
(e) p =

l+ t'_

_/_ " are known
o

(f) Same

2.2 NON-EQUILIBRIUM FLOW FIELD PROGRAM

The treatment of general non-equilibrium flow of air, or other

multi-component gas, past blunt bodies requires more far reaching changes :

to existing methods than those sufficing in the frozen or equilibrium chemis-

try regimes. The chemical kinetic effects influence the fluid motion,

since reaction rates depend on the streamline pattern and the velocity field.

Several authors have recently considered non-equilibrium effects in blunt

body flows. Freeman (Ref. 2.8) treated the flow of the ideal dissociating

gas introduced by Lighthill with a single reaction obeying a simple rate

equation. This is an extension of the treatment of perfect gas flow by the

Newtonian approximation. Lin and Teare (Ref.2.9) calculated reaction rates

round a blunt body with a predetermined pressure field and streamline pattern;

they therefore neglected any interaction effects. More recently Lick

(Ref. 2.10)generalized the inverse method to treat a reacting gas including

dissociation and recombination. Wurster and Marrone, and Hall, Eschenroeder

and Marrone (Refs. 2.11,2.12,2.13,2.14,2.15) in a series of detailed studies

extended Lick's treatment to deal with higher order reactions allowing for

vibrational degrees of freedom out of equilibrium and for ionization.
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In the present paper the direct integral relations method is

extended to treat non-equilibrium flow past blunt bodies of revolution.

Chemical kinetics are treated in essentially the same general manner

proposed by Wurster and Marrone and attention is focused on the changes

required in the method of integral relations to handle a multi-component

gas. To an extent the fluid motion equations can still be treated separately

from the chemical kinetic equations since the latter do not contain any

derivatives of pressure, density or velocity components. The method of

integral relations is only applied to one momentum equation and the con-

tinuity equation. The chemical kinetic equations are integrated as they

stand. At each stage of the integration the kinetic equations are treated

first to determine the new species production rates. The latter are then

introduced into the energy equation to obtain increments in the flow

velocity variables. The remaining equations are then handled in much the

same manner as in the perfect gas case. The direct method is applied in

the first approximation in which certain combinations of the flow variables

are assumed to vary linearly between the body surface and shock wave. The

equations of motion are satisfied exactly on the body surface and the

shock wave. Immediately behind the shock wave it is assumed that the

translational and rotational energy modes are in equilibrium and that

the chemical species and the vibration energy modes are frozen at their

freestream values. Therefore, the values of the flow variables at the

shock can be determined from the Rankine-Hugoniot equations for a constant

specific heat perfect gas. The body properties and the shock shape are

determined from the Bernoulli equation, the Rankine-Hugoniot shock equations,

the geometry, and the r-momentum and continuity first approximation integral

relation equations. The resulting system of equations to be solved consists

of seven simultaneous first order non-linear ordinary differential equations.

All but one of the boundary conditions needed to integrate these equations

are given on the axis of symmetry. The remaining condition is determined

from the condition of transition through the sonic line. The equation

for the transverse velocity component on the body surface has a saddle point

near the sonic line and it is required to find integral curves passing

regularly through this point. The shock detachment distance is adjusted

until the required sonic behavior is obtained.
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Recently, two direct solutions of the blunt body problem have

appeared in literature. The treatment of non-equilibrium hypersonic flow past
blunt bodies by the method of integral relations has been considered by

Belotserkovskii and Dushin (Ref.2.16). They applied the method to flow

of dissociating air, using the second scheme, in which the integral

relations are evaluated along strips parallel to the body surface, while

the actual numerical integration is carried out along normals to the sur-

face. As previously mentioned, a number of arguments can be offered in

support of the second scheme since concentrations vary much more rapidly

normal to the body than they do parallel to it. However, the number of

shock and body points determined by the scheme is limited by the order of

the approximation. The second approximation given three points, the third

four and so on. Calculations of non-equilibrium flow using the first scheme

have been carried out by Shih and Baron (Ref. 2.4). They use the first

approximation with a low temperature (no ionization) air model containing

six chemical reactions.

In the present paper the integral relation method is applied

with the first scheme to a complex model of air, appropriate at the ex-

tremely high velocities and altitudes associated with parabolic velocity

earth re-entries. The chemical kinetics used to describe the air gas

model include coupled vibration-dissociation relaxation, atom and charge

exchange and atom and electron ionization. The description of the non-

equilibrium program is divided into four major parts: (i) Basic Flow

Equations, (2) Chemical Kinetic Rate Equations, (3) Boundary Conditions and

Numerical Integration Procedure, and (4) Shock Layer Property Calculation.

2.2.1. Basic Flow Equatlons

In non-equilibrium blunt body flow solution, the steady adiabatic

flow equations have been written in spherical polar coordinates and made

dimensionless by referring the flow quantities to free stream stagnation

quantities. Although boundary layer coordinates are probably more convenient

for arbitrary body contours, the flow equations for this problem were

treated as a simple extension of a spherlcal-polar coordinate perfect gas

solution (2R7) and hence it was convenient to retain these coordinates. The

dimensionless variables are defined in the list of symbols and in the sketch

of the coordinate system in Figure 2o
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The flow equations used in the first approximation non-equilibrium
solution are the continuity equation, the r-momentumequation, Bernoulli's

equation, the energy equation, the state equations, and the chemical reaction
and vibration energy rate equations.

The continuity equation in spherical polar coordinates is

(r2_u sin O) + @--_d (rfi_v sin O) = 0jr
2.74

while the r-momentum equation is

pu _u + • u .._ .p_X_ + k _p = 0_lr P7 Je - r Jr 2.75

As was noted in Section 2.1 a., the continuity and r-momentum equations

must be converted to divergence form. In simplified notation, the divergence

form of the continuity equation is

_A_ (r 2
A

h sin _) +-_-- (rt sin g) = 0dr

while the divergence form of the r-momentum equation is

2.76

where

_J__ (r2
A

H sin @) +-_--_ (r S sin 8) - r g sin @ = 0dr Q_

2
H=kp+ pu

S = jOUV

t ----jOV

h= .pU
2

g = 2kp + joy

2.77

2.78

The method of integral relations is now applied to the continuity

and the r-momentum equation. Firstly, the independent variables are changed

from r, 0 to f, 0. Applying the first approximation, these equations, are

integrated with respect to _ between the limits 0 and i. The unknown functions

in the integrands t, s and g are assumed to be linear functions of f . The

coefficients in these functions depend on their values on the body surface

(suffix 0) and at the shock (suffix i). The integral relations relate the

derivatives of these coefficients with respect to 0. The integral relation
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obtained from the first approximation continuity equation is

* - (3 2)
t' = , ' + _Io ( 3, i) tl

2.79

where

!

Bz =(3,2) _t1(3,1) - to) 6

!

Ic 3 (2 i) r

O

ot @ + (3,1) £

!

The expression for tI

r]cot 8 - 3(2_i_ o

[(3,1) (3,1) _ t

6 (i 1)2 h I 6 (1,0) 2 h
' O

t - +
o (3,1) 6 (3,1)

is obtained similarly to ./_ derivation in
1

Section 2.1 a.

(see p.3O) giving

2.80
1

The definition t is combined with the shock relations
1

!

: GI - hI 281

where

_ 2 (I - q_ ) cot _ cosec _-

G i = v I - n 1
i + (i q_)

Fhe integral relation r-momentum differential equation is

' (3,2) ,
S = S +o (3,1) i _ri

2.82

2.83

where

or (3,2) 3(2 i)

i = (3,1) (Sl So) _ [(3,1) cot @ - (3,1)

!

3(2'i) r 1 HI

o 6(1,1) 2

- ot 8 + (3,1) _ So - (3,1) _ +

+go + (3'2)(3,1) gl

!

rIo

6(1,0) 2

(3,i)

sI

The differential equations _.79) and (2.83) can be expressed

entirely in terms of the dependent variables _ _ Uo,' ' Vo' Po' _ o'

the species concentrations Kj_and the species vibration energies e]..

*The prime superscript refers to differentiation with respect to @.

**(a,b) = ar + b _ .
O
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The differential equation for detachment distance, _, is given

by the geometrical relation

dE
d-_- = - ro - (ro +£) cot ( _ + @) 2.85

The differential equation for v is derivated from the energyo
equation, the Bernoulli equation and the equation of state.

Energy Equation

In dimensionless form the energy equation is

2
kH + ½q = ½ 2.86

where H = Z F_h_

_'=i

2.87

O

and h,¢ = c T + (n_, - l)e + h_
p_, v_

The perfect gas equation of state is

2.88

T= P
S

2.89

If we define

C

p,_ 2

5 + 2(n_ - i)
2.90

K
-- "¢=I P"

and c =
p s

2.91

and we combine the differential form of energy and the equation of state

we find that for the body streamline

v .._o + P-- + kli' = 0
o p 2

2.92
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s g

where_i' + _ L-h.e - _" T] IP._ + Z dr._ (n.e" - 1+e'
p • v.<

•¢ =i ,¢'=f+i

The derivative dPo/d@* is given in terms of dv /dO by the Bernoullio

equation

dPo _o v dv
0 0

dO k dO

and the expression for ddOo/d@ is obtained from the definition of to

and is given as

! t I I

O _oVo

O V V
O O

When these equations are substituted in the energy equation 2.92, the

following equation is derived for v '
O

dv E
O O

dO F
O

2.93

2.94

2.95

2.96

-- _oto I I

kcv PH '

where E = p o _o 2.97

-o (c - l) c
P P

2 2
and F = a - v 2.98

O O O

where a 2 =_ kc_Po 2+99

o (7 - l)PoP

On the axis of symmetry dv /dO is indeterminate and must be
0

I

replaced by a limiting form of the equation. Since _ is an even function,
0

the equation reduces to

it

dv t '
__o =o_2 -

dO d_o
2. i00

*In this study, the original first approximation solution was obtained by

simplifying a second approximation formulation in which it was necessary

to evaluate p' from the @ -momentum equation integral relation. In the
• O

fxrst approximation, however, the O-momentum integral relation introduces

approximations that need not be made, and, hence, the Bernoulli equation

which involves no approximations has been used.
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where the determinate expression for t ' is determined in a similar manner
0

to that described in section 2.1a and is given by

t ' =- (3,2)t ' + _ 2 i01
o (3,1) i i

!

where tI is given by equation 2.81 and

3(l_l)h I + 3(1,0)2 h-- 2.102
$i :- (3,1)_ (3,1) E °

i ference,

tions.

I smal icc

]is tance

i

9e assu.

and rota

Lhrough

tions is

i relation

, 4_'_

I el : _2_

I a:
I

I where q_

I

I

I

I

The differential equation for d _ /d@ is obtained from the r-

I momentum equation, and the shock boundary conditions. The procedure for
deriving the differential equation is similar to that given in section 2.1a

and only the resulting equations will be given here. The one major dif-

other than the coordinates, however, is the shock boundary condi-

In the non-equilibrium problem the shock thickness is assumed to be

small compared to the vibration energy and chemical reaction relaxation

distances and, hence, vibration energy modes and the chemical species can

be assumed to be frozen through the shock. Therefore, only the translation

and rotational energy modes are assumed to attain their equilibrium values

through the shock. Thus, the equation of state utilized in the shock rela-

is the perfect gas equation with constant specific heats. The shock

relations in non-dimensional form are (2"17)

O2 _'_- I
(1-%) "T

- q_

( _- 1) 2 )

J4 go
2.103

i
2

2 ¢.- 1 %
(i - qo ) 2 2 2o104

_- i I + (i - q_ ) cot O"

is given in terms of the Mach number M_ as

q_

½

M2 + i® (_-l)

The resulting differential equations for dr/d@ is given as
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!

dO" Sl

d8

2
2,(vI

DI

u12)
2.106

where
DI =

2 2
q_ (i - q_ )

6- i
UlVlsin2

2

i - ql

+ -PI _fVlml u I ! n
+

I

2v I

i - q 2 (Vlnl - Ulml)_

2.107

dqYsin8 dqx
ml = d_ - _ cos@ 2.108

dq sinO- cos8
nl : dO" dO"

_i 2 2qx = qem _'_ + I sin

qy _ + i sin 26" (i

, J(i M2 sin2 •)
@m

2
M_ sin20"

2o 109

2.110

2.111

dq 2 q_
X

sin 20-
d _ _ + 1

dqy 2 q_ I
= (cos 2_ +

dO" _ + i M 2 sin26"

2.112a

2.1 I2b

u I = qySin8 - qxCOS8 2.113;_

v I = qxSin@ + qyCOS8 2.113b

!

and s 1 is given by equation 2.83. All the equations derived so far are

applicable to an axisymmetric body of general shape. In the evaluation
! I !

of Sl, s must be determined. The equations described s are determined
0 0

from the fact the body is treated as a streamline and, hence, the stream-

line velocity and the coordinate velocity components are related by the body
!

geometry. For spherical bodies s = 0 and, this problem is avoided.
O
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On the axis of symmetry equation 2.106 is indeterminate and the

limiting expression for the integral equation is determined in a manner

similar to section 2.1a. and is given as

!

Sl = _3jl) _ 2.114
(3,2)

where

3(1,1)2 H_!l 3(1,0)2 H go gl
-- = . o + + (3,2) 2.115
_i (3,1) _ + (3,1) _ _- (3,1) T-

2.2.2. Chemical Kinetic Rate Equations

In the non-equilibrium flow field solution, full account of

the non-isentropic interaction between the chemical reactions and the

flow field is obtained by considering chemical species and vibration energy

non-equilibrium with coupled-vibration-dissociation. The rate equations are

presented in non-dimensional form and the variables are defined in the list

of symbols. The'notation is similar to that utilized in reference 2.11 where

species concentrations _. are given in moles per original mole of air.
]

The discussion of the particular reactions considered in the Project Fire

problem and the rates associated with these reactions and the vibration-

dissociation coupling model utilized are given in the section 2.3 titled non-

equilibrium Air Chemistry. A definition of the subscript notation along with the

rate equations utilized are presented here.

Chemical Kinetic Subscript Notation

(a) Species are denoted by integers j = 1,2...s.

The j = 1,2,3..., s species are further subdivided into

j = i,... c for conservation of the kth atomic component,

and

j = c + I, c + 2, ... f for diatomic species in which

dissociation-vibration coupling will be considered.

j = f + i, ... s uncoupled species conservation relations.

Therefore

-31-



total

number of

species

cies

conservation

equation

\

f

Species j,or_"

conservation of

kth atomic component

equations I
coupled vibration-

dissociation (CVD)

f-
No CVD

i

2

c

c+l

f

f+l

m

s
m

total

reactions

(b) reactions are denoted by integers i = 1,2, .... r

The reactions are grouped as follows:

reactiQn_ species J

$pecles

jffic+l

coupled

vibration

dissociation

(CVD)

No CVD

ftj

2

3

bj

b I + 1
cj

species

j-c+f

CVD

No CVD
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q__

Rate Equations

f

No CVD [ f" + 1j
!

species 1j = f+l ... s r

The system of reactions is represented as in reference 2.18 by

I S S /
5 _ijMj= _ _ ijMj
j=l j=l

!

where M.j represents the chemical species and _ij and z_'j are the

stoichiometric coefficients of the reactants and products respectively.

coupled vibration-dissociation rate equations in non-dimensional form are

as follows:

Coupled Species Conservation Equation

d _'. d_ _ i Qii____/ i- u i+

dt = q --_ _ _1r .ff

i +

D._.

I .I

evj e

i=lj

_j

The

r

P
i=f .+I

J

The species production rate is given as

(j=c+l ,...s) 2.116

2.117

where

!

_ -:_-_,_
zj

S

_i_ Z _
='=i

S

i---
_'=i -33-
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The vibration relation time "g-j is given by

where

Z°

1

bj

T. = (1 1 ) s
] - 0v./T qm _ ZiPl0i

] i=lj
e

a. -- ½ _. jOT½i P t_t_ Imm

MW_

2.119

2.120

and

2

Di (8qTk)½ N

i _i ]xi o

2.121

0
V.
]

PIO. =
i

=v_eL
¥
t_

Ci/T I/3
A.e-
i

.28 .28

¥ r
t_

2.122

2.123

and C. =
I

C.
i

2.124

The equilibrium vibration energy e
V.
]e

is given by

e =0
V. V.
]e ]

u T 2

(@v./T) + @.l
j v.- ]

Conservation of kth Atomic Component

s

j:l
+ r

2.125

2.126

*barred quantities are dimensional
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de
v.

____l= qdt

Coupled Vibration Energy Equation

de _e _ e
V. V. V.

__-%= u l+ v l=

dZ _ _ r _ O

e e
v je v i

rj

+p CDj

ev
Je

i--lj

°

lj

(j = c+l...f) 2.127

The coupled species conservation and vibration energy equations are

integrated point by point along the stagnation and body streamlines

using the values of Pi' _i' _'i and _i at an old point, i, to ob-

tain the new values of _i+l and _i+l at the next point, i + i. Since

in the first the approximation solution integration is only done along

streamlines, the rates are given as total derivatives of streamline

coordinates for spherical bodies. The temperature T is obtained from

the equation of state

T = P 2. 128
s

j,Z 
1

The appropriate rate constants for air system are given in Section 2.3.

2°2°3° Boundar_ Conditions and the Numerical Integration Procedure

Seven simultaneous first order non-linear ordinary dif-

ferential equations must be solved in the first approximation integral

relation solution of the non-equilibrium blunt body problem. These seven

equations which are given as 2.85, 2.106, 2.96, 2.94, 2.95, 2.116, and 2.127

relate the dependent variables _ ' _ ' Vo' Po' 3_o.' _'3 and e.j to the

independent variable 0. To complete the formulation of this first order

problem one boundary is required for each dependent variable. As in

equilibrium solution, initial values of every dependent variable except
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are specified on the axis of symmetry. The final boundary condition is

given by the body sonic velocity location which in turn depends on whether

the prescribed body contour is smooth with continuous slope, or sharp with

discontinuous slope. The sonic velocity point boundary conditions and the

convergence scheme utilized for these conditions are identical to the

equilibrium scheme and will not be repeated here. The calculation

procedure used to determine the stagnation streamline boundary conditions

is considerably more complex than the equilibrium problem and is discussed

in the following paragraphs.

Stagnation Streamline Boundary Conditions

At @ = 0

0- = _r/2

v =0
o

Normal Shock Properties

Since the chemical species and vibration energies are assumed

not to change through the shock wave, _. and e. are initially the same
J J

as their free stream values and PI' _i and u I can be determined directly

from the perfect gas constant specific heat Rankine-Hugoniot equations

given on pages 29 and 30.

Stagnation Point Properties

In the non-equilibrium solution, the stagnation properties are

obtained by combining the energy and state equations with the integration

of Bernoulli and the chemical and vibration non-equilibrium differential

equations along the axis of symmetry from the shock to the body. To complete

the formulation of the stagnation point property problem, another equation

is required and the fact that velocity along the stagnation streamline is

nearly linear between the shock and the body (2"15) was utilized in this

study. It is desirable to stop the stagnation streamline integration before

the stagnation point is approached, because all reactions tend equilibrium

in this region and the step size for stable integration is very small, and,

hence, the integration time is very large. It is possible to obtain the

equilibrium stagnation properties without integrating the rate equations

all the way to the stagnation point by noting that pressure only changes

in the four or fifth significant figure in final 10% of the stagnation

streamline integration. (2"4) Thus the all stagnation point equilibrium

properties are accurately specified by the pressure obtained from the

"incomplete" stagnation streamline integration and the knowledge of the
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stagnation enthalpy. In this program, the stagnation point density and

all the species concentrations which are required as initial conditions

are computed from a free-energy minimization thermochemical equilibrium

(2.6)
computer program.

A few comments should be made about the numerical instability

problems associated with the integration of the chemical kinetic rate

equations. In this program, a variable step fourth order Runge-Kutta

numerical scheme was used to integrate the differential equations. In

order to avoid numerical instabilities associated with this explicit

integration scheme, the integration step size was made a fraction of the

distance required to relax a given specie to a zero concentration. The

step size resulting from this criteria is given by

_z =
s

d IdzlT-
where D is an input constant. By utilizing this step size criteria

together with a test on the terms in the Runge-Kutta fourth order series

expansion_a stable integration was achieved in the two critical step size

regions; (I) behind the shock where the rates are very large and (2) at

points downstream where some reactions approached equilibrium.

2.2.4. Shock Layer Property Calculation

The first approximation integral relation solution of the

non-equilibrium blunt body provides all the flow properties at the shock

and body but does not specify the shock layer properties. In making the

shock layer calculation, we may utilize the three linearized integral

relation variables, the conservation equations, the equation of state

and the rate equations. There are the seven unknown flow properties,

h, T, _'i' ej, p, p , and q that must be solved for in terms of the shock

layer spacial coordinates, and if the three integral relation approxima-

tions are included, there are nine independent equations that can be used.

Since there are more independent equations available than there are unknowns,

the problem is overspecifled and we are at liberty to select any six

independent equations. The method chosen to determine shock layer

properties was to locate streamlines, determine velocity and density

from two of integral relation approximations, obtain the enthalpy and
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temperature from the state and energy equation, determine the pressure from

the state equation and obtain the species and vibration energies from the

integration of the rate equation along the streamline. In the following

paragraphs, the streamline shock layer calculation method will be described.
The streamline calculation is divided into two major parts: (I) streamline

location, and (2) streamline property determination.

(I) Streamline Location

The streamline location within the shock layer was

determined by locating points of constant stream function, _/ in the

shock layer, which by definition are points on a given streamline. This

calculation was accomplished by utilizing the continuity equation and the

approximation used in the continuity equation method of integral relations

solution. The geometrical quantities used in the derivation, are shown

in Figure 2.

For axisymmetric flow
2

Yl

= f.q -T- 2.129

and from continuity through the shock layer

r-r

• /om I = 77yi 2 _ q_ = 2fr _I = 2T[ fl vydr

r
o

2.130

Transforming variables from r-r O to ff where _= r-ro/_(0)

: f vydf
o

2.131

2.132

and

o

2.133

In the solution of the non-equilibrlum flow field, t I pv is assumed

to be linear in _ .

Therefore,

t ffit + - .o (tl to ) _ 2.134
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From geometry

Y = Y@+ f _ sin�.

Substituting 2.134 and 2.135 into 2.133, we find that

f

_o + (t I - to)f7 [Yo +fEsin@]d_

O

2.135

2.136

and

2
_q_ Yl (9)

2 = £2(@)sin@ _i (@) - to(9)J __33

+_(9) _yo(9 ) [tl(9 ) - to(9 _ +_(9)to(9 ) sin_ 2_"

+ yo(9) _(9) to(e)_
2.137

To find _ = _i (_,9), for a given a table of 9's, calculate

_i = _ q_ Y12(91 )/2 and solve the cubic equation 2.137 for f at

each 9 and store this information.

For a given streamline it is also necessary to know d_/d9 = fl(9)

and tan_" = dn/ds = f2(9). The derivative d_/d9 is obtained from numerically

differentiating the streamline table results relatingf= (0) for _= constant.

To determine dn/ds, we note from geometry that

= (r°

Therefore

tan_ = -- = +
- (1 4 9_s

2.138

The relationship between an incremental change in 9 and z is obtained from

the relation _s/ _ z = cos=_" = (I +rE ) _9/ 4_ Solving for d�, we obtain,

_9 = (_ Z/_ +_) cos_'. Therefore, at a given 9, and_where we already

know f , df/d_d _/d�, and E, we can evaluate_" and _Z/49.

(2) Streamline Property Determination

The properties in the shock layer have been obtained by

integrating the conservation equations along a given streamline and by
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using two of the linearized variables obtained from the integral relation

solution. The calculation is started just behind the shock at a given 0,

and the initial values of dependent variables are given by

o_I =/7"/2 - (V+ @) + arc tan (

ql = (Ul 2 + v12)½

Yl : Pl(_l'q©'_ )

PI = PI (_I' q_ ' _ )

TI = TI (PI' PI _'j )

/ P I tan@" )
2.139

2. 113

2. 104

1.103

2.128

e = e

v. v.

The calculation procedure for determination of the shock layer

properties is as follows:

The equation for the velocity q, is obtained from integral relations

s =Fuv = sI

and

t _pv = t +o (tl to)

and the geometrical relation that

q ffiu/sin_" .

When these equations are combined we find that

Sl _ 2. 140

It + (tI sin_o - to)

where Ul,_l and Pl are obtained from the Rankine-Hugoniot relations

2o113, 2.104 and 2.103.

The density is derived by combining the integral relation

#@v = t + (to I

and the geometrical relation

- to)_

q = v/cos_"
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to obtain

f

t + -o (tl to)

q COS l_'
2.141

The equation used to evaluate the temperature is obtained by

combining the caloric equation of state and the energy equation giving

s f

I (i - q2) _ _ _jhjO . Z _j(nj- l)e v

J=l c+l 3
fl

__ 6(1.5 + nj)

J=l

2.142

The species concentration _j and the vibration energies ev. are obtained

by integrating the rate equations 2.116 and 2.127 finally, the pressure is

given by the thermal equation of state 2.128.

s

P=joT Z _j

1

2.2.5_ Continuation of the Non-Equilibrium l>ro_ram beyond the

Sonic Corner

In the preceding discussion of the non-equilibrium computation

along the body and shock, the integral relations were linearized along body

normals. Since this procedure is not applicable beyind the sonic corner, the

method is limited by the ray through this corner. In order to obtain the

state of the gas and the extent of the shock layer beyond this ray, a re-

quirement for the radiation computation to body points near the corner,

an alternate method was formulated as follows.

All quantities at the corner are determined by Prandtl Meyer

relations. As a result the only unknowns are the shock detachment distance

and shock angle. The geometrical relation connecting these still applies

as before so just one integral relation is needed to provide the second

equation. This is obtained from the continuity equation. It should be

noted in this solution that the linearized functions are

Jr.= y_v

and

L = y _u

while in the preceding discussion onlypuv and pu were assumed linear. This

difference greatly simplifies the computation and causes little inaccuracy

since yl/Yo does not differ greatly from unity. However, this change in
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assumptions does require one alteration in the determination of the streamline

locations in that _is now computedby setting I equal to unity in equation 2.137

This change is required tO compensate for an approximately 2% difference in

the standoff distance caused by the different assumptions. The details of

the analysis follow.

In order to deal with a centered coordinate system the integral

relations were assumed to hold over rays in the Mach line direction at the

corner; thus in Figure 2a the angle variable e is

and Y = Yo + n sin (e + es )

The continuity equation may be written as

where JL= y@v

L=yeu

Near the corner in the Prandtl-Meyer expansion region R-.p0 and this equation

becomes

_ + _n (nL) = 0

With the change of variable _ = n/4E , this becomes

If we assume._ to be linear in I ' i.e.

equation 2.143 can be integrated from

or

d +_o) . ½I
!

I :,, 0 to i to give

--_-o) + LI = 0

: " + -f- (Jli " to) - 2LI
I O
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.ow _ o : yo f 0%

, I l

= + o )and _- o Yo ( e oVo Voe

!

and v' are given by the Prandtl-Meyer relations.
where _ o' Vo' _ o' o

"_I and L 1 can be computed from the following relations

Yl = Yo + 6 sln(8 + @s )

_+I

fl "T:-r _'-
2

qN

2 ) cot2¢.I + (i - q_

2.145a.

i r

--q-Lcos• sin(_'+ g +V 1 8s)

i [
l=qm -

i -where the,quantlty qw is

yieldsJ_ I. Equation 2.61 idiscusslon.

tlon) may be written as

d@" MI

I where ,

I MI : _I " _iVl sin (g + gs) 6'

r

-e Ik_ Vl cos ,g + 'I
rv .e_+ovI
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(g + gs ) - YlUl]

is non-dimensionalized by qmax" Thus equation 2.144

of the equilibrium flow field solu-

- -_- sin _ cos (17"+ g + gs)_

cosCr cos (Q'+ g + g )
S

- -_- sin _ sin (0"+ g + gs)]P1



V 1 -- - qm sin a'sin (_'+ 8 + Os ) +

+

_i2 dO" _i cos

Finally from geometrical considerations

cos (_-+ _ + 8 ) - u Is

d__&_&= __ cot (0"+ O + 8 )
d8 s

The values of _ and (_" can now be computed from

O"i = c'i.1 + (d--6--)_ o

i = _i-I + (d--@"-) _ @

by iteration using equations 2.145 and previous values.

2. 145 b.

2.3 NON-EQUILIBRIUM AIR CHEMISTRY

The species included in the present calculation of non-equilibrium

properties of air are 0, N, e', 02, N2, NO, NO + , 02+ , N2 +, 0+, and N+.

Continuum theory iS used, with the rotational energy of all molecules every-

where equal to the local gas temperature. Vibration relaxation, dissociation,

atom exchange, charge exchange, and ionization rates are included in the

calculation as well as vlbration-dlssociation coupling. Values for rate con-

stants were obtained from a survey of the literature, with some modification

of the equations used for extrapolation to high temperatures. Simplified

analytic expressions for equilibrium constants were formulated based on

(2.19)
spectroscopic data tabulated by Steiger.

A number of charge transfer reactions were excluded from the set

of reactions finally adopted; those having a relatively large energy defect

are thought to have quite low cross-sections. Electron impact excitation

and ionization was to be included originally, but subsequent study revealed

that there is too little information on elastic and inelastic energy transfer

rates between electrons and molecules. Only associative ionization Is included.

Electron attachment is insignificant at the high temperatures found in the

Case III flow field.

-44-



The reactions used and the corresponding forward rates and equilibrium
constants are listed in Table i. The methods used to obtain the numerical

factors are discussed briefly below.

2.3.1. Equilibrium Constants

(i) Equilibrium Vibrational Energ_v

Spectroscopic data for the atoms and molecules considered here

have been tabulated recently by Steiger. (2"19)- The vibration and vibration-

rotation coupling constants for N2, 02, and NO were used to compute equilibrium

vibrational energies according to statistical mechanics (see for example

Mayer and Mayer(2"20)). It should be noted that Steiger's formulation in-

cludes vibration-rotation interactions correctly in computing partition func-

tions, but incorrectly in computing vibrational energy. The expression used

in these calculations is (2"20)

t ule = R_ _ + (2¢+ 6_ + 2_ = R_ u + 2.146

Vie u I u eu i

where u. = @ /_, with @ values of 2335 3541 and 2786°K for 02, N2 and
J v. v. ' ' '

] ]

NO, respectively. These values, given recently by Konowalow and Hirschfelder, (2"21)

are somewhat larger than those given by Herzberg. (2"22)_ Values of u are
O

given in Table II.

The ground electronic state properties of each molecule were used

in computing vibrational energies, since the constants of low excited states

differ little from the ground state. The values used are given in Table II.

(2) Equilibrium Constants of Chemical Reactions

For convenience, the species considered here are divided into

a group of 3 independent elements, 0, N, and e , and a group of 8 dependent

species, 02, N2, NO, NO + , 02+ , N2 +, 0+, and N+. Although a large number of

reaction paths are considered, the equilibrium state is completely specified

by a total of only 8 independent equilibrium constants. Equilibrium constants

for 8 reactions were selected as being independent and the remaining equilibrium

constants were calculated by linear combinations of these 8, providing complete

consistency in the calculations. It should be noted that Wray(2.23) L over-

specified the equilibrium state by utilizing redundant equilibrium constants,

i.e., the approximations used for his K(5), K(6), and K(7 ) are inconsistent

with his K(2), K(3), and K(4 ).
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Using Steiger's tabulation of spectroscopic data, hand calcula-

tions of equilibrium constants were madefor temperatures up to 32,000°K

and were fitted by polynomials. Only those excited states which madean

appreciable contribution to the partition function were included and, as

mentioned above, vibration and rotation constants for all molecular electronic

states were assumedthe sameas ground state values. The first two excited

electronic states of 02 were included, as well as the first of O, none of N2,
the first two of N, the first of NO, the first of N+, and the first two of 0+.

Polynomial expressions for the three associative ionization reactions were
already available from Lin (2"24) for temperatures 3000°K • T _ 30,000°K.

Thesewere used in a slightly simpler form. The results, given in Table I,
are accurate within 10%over the temperature range 8000°K• T • 32,000°K.

2°3.2° Vibration Relaxation Rates

Because of the good agreement at high temperatures obtained by

Wray (2"25) between experimental vibration relaxation times in nitric oxide

and the Schwartz, Slawsky, and Herzfeld theory, (2"26'2"27) the SSH theory

was used here for vibration relaxation of all 3 molecules, 02, N2, and NO

at high temperatures. Although the theory can be used to provide absolute

relaxation rates, they have been normalized by experimental data at the

highest temperature available. The required reduction in the results of

SSH theory in order to match experiment is a factor of 2 for oxygen and 4

for nitrogen.

The expression for the vibration transition probability given by

Schwartz and Herzfeld (2"27) is

$+c) _'2h2 Vl
2.147

where _K_ = [2 r4_(h_)2/(_*)2h2kT] 1/3

* = 18.0/r ° for 10,000°K _ T { 30,O00°K

rc'2 _i/2 +_)½ ] - i/3_--) = (i -- + 1/2
0

C w,P

i+¥-I

V = - _AI __#" "• _ z
I-.0

and these parameters are defined in refs. 2.26 and 2.27.
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i

I

I

At high temperatures PI--_0 = P0 the ratio being exp (h _/kT)--_I'

The final expressions used, based on eq. 2=147 and available

data,(2.25,2.28 2.29)' are

oxygen

nitrogen

PI0 = 1.7 x 104

= 8.0 x 104

- 0.28 1/3

exp (-206/T )

- 0.28 1/3

exp (-273/T )

- 0.28 i/3

nitric oxide = 4.5 x l04 _ exp (-230/_ )

These transition probabilities are used in the classical uncoupled vibration

relaxation rate expressions (2"37)

de e - e
v. v. v. - _IT

_____idt= |e,_d. ] = (ev. - ev.) ZP 0 .o I (i - e _ )
je j

2.148

where _v_• is the equilibrium vibrational energy at the local temperature,

is the fundamental vibrational oscillation energy in OK, and Z is the collision

frequency given by

_I _2 2 (2 • _T)_

where }i and _2 are the number densities of molecul_of type i and 2, DI2 is the

average of the molecule diameters, /_12 is the reduced mass of the molecule pair and

k is the Boltzmann constant.

2.3.3. Chemical Reaction Rates

The forward rate constants used were compiled from several sources,

with a few modifications to insure physically reasonable extrapolations to

high temperature. The oxygen atom three-body recombination rate coefficients

were taken directly from Lin. i2"24)'" However, an average value of 1.0 x 10 -32

T -_I cm3/particle was used for the inert catalysts N2, N, and NO.

For nitrogen recombination the rate constants summarized by Lin (2"24)

were used in the temperature range for which dissociation rates were measured.

If this form of the recombination rate is used at higher temperatures, the

dissociation rate constant reaches unreasonably large values. This arises

because of the T-_ temperature dependence for the pre-exponential factor of

the equilibrium constant of this reaction. To provide proper extrapolation of

the dissociation rate constants the inverse temperature dependence of the

recombination rate constants was increased by one power of T and matched to

Lin's rates at 9000°K.

The rate constant for recombination to form nitric oxide with NO

as catalyst was taken directly from Wray and Teare. (2"30)-- The value of the
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rate constant for other catalysts was assumedto be the sameas that for (2.31)
argon, measuredat an average temperature of 4000°K by Freedmanand Daiber.

The temperature dependencedetermined by Wray and Teare was used to extrapolate

to higher temperatures. The rate used here fits Freedmanand Daiber's results
at 4000°K, and is 4 times larger than Wray and Teare's results.(2"30)

All of the atom and charge transfer reaction rate constants were

taken directly from Lin. (2"24) As mentioned earlier a number of charge transfer

reactions were excluded owing to large energy defects. Theoretical analysis,

in agreementwith experiments, shows that the cross-sections are very small

for charge transfer involving atoms and monatomic ions if the energy defect
exceeds a small fraction of kT. (2"32) There is no experimental evidence to the

contrary for charge transfer involving molecules and molecular ions. Therefore

only charge transfer reactions having an energy defect less than I ev were

retained, after examining all processes, including those involving low excited

states.
The only ionization processes included were the associative ionization

reactions. Lin's rate constants (2"24) were used, but were extrapolated to high

temperatures in a different manner. Lin extrapolates using the dissociative
recombination rate constant. However, because the pre-exponential factors in

the equilibrium constants increase rapidly with increasing temperature, the
associative ionization rate constants obtained by Lin also increase with tem-

perature, leading to unreasonably large cross-sections. It is thought preferable

to extrapolate using the associative ionization rates determined in the tem-
perature range 4000-5000°K, using a T"½ pre-exponential temperature dependence.

Although electron impact excitation and ionization processes are

probably significant for these conditions, insufficient information is currently
available to warrant their inclusion. It is known that multiple excitation is

(2.35)
the dominant electron impact ionization process for monatomic gases

and is expected to dominate in diatomic gases. Calculations of the necessary
cross-sections are currently being carried out at Philco Research Laboratories,

but are not yet complete. In addition, because there is insufficient informa-
tion on the rate of transfer of energy from molecular species to free electrons,

it is not possible to determine the electron temperature accurately. Further

theoretical and experimental work on excitation rates in diatomic gases is

needed to complete the set of chemical reaction rate constants.
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2.3.4, Vibration-Dissoclation Coupling

The coupling between vibration relaxation processes and dissociation

processes, known for some time, has recently been treated theoretically (2"34'2"35)

and observed experimentally in argon oxygen mixtures at temperatures up to

18,000°K. (2"28'2"36) The coupling model used here is considerably simpler

than the earlier theoretical treatments, although essentially the same in

fundamentals. As was done by Treanor and Marrone (2"35) the vibrational energy

lost through the dissociation process is included in the vibrational relaxation

rate equation. However in the present model it is assumed that the probability

of dissociation is large only for high vibrational levels as opposed to e_her

treatments which assume that "dissociation occurs with equal probability from

any vibrational level in any collision that has sufficient translational

energy to effect the dissociation". (2"35)

The above assumption is based on the knowledge that the probability of

a collisional transition to an adjacent quantum level is much greater than that

for a change of two or more vibrational quanta. (2"37) Similarly the cross-

section for dissociation from a very high vibrational level is considerably

larger than that from a low level because weak (distant interaction) forces

are sufficient to effect the energy exchange required for dissociation of the

high level.

With this model, all molecules dissociated must climb through the

vibration ladder, the energy being fed to dissociation, through vibration

relaxation, from the translational energy of the gas. Thus the vibrational

coupling limits the rate of dissociation to a value which can be supplied

energy-wise by vibration relaxation. This limitation is expressed as

_ d L-_X21 * dev
E dt - -.[X2_ _- 2.149

dissociation rate (d[X 2] /dt)u,

full range of conditions, _-ii

where E is the dissociation energy of molecule X 2 and dev/dt is the rate of

production of vibrational energy per molecule. The limitation in dissociation

relaxation time given by equation 2.149 can be combined with the uncoupled

to determine the dissociation rate over the

2.150

At low temperatures the uncoupled rate is very small, the second term on the

right of equation 2t150 dominates, and equation 2.150 correctly gives the

*The units of the bracketed quantities are particles per original particle of air.
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uncoupled rate. At high temperatures equation 2.150 reduces to equation 2.149

without the inequality.

The vibrational relaxation rate equation, including the energy

lost by dissociation, is given by Treanor and Marrone (2"35) as

= ] E(TT'Tv)

dt _X2] dt ) +--IX2] ( dt )r

dfX2 d
+----/-- ( ) - ( ) 2.151

X 2 dt f

where the subscripts f and r refer to the dissociative and the recombination

process respectively, T T and Tv are the translation and vibrational temperatures

respectively. The assumption that dissociation occurs primarily from upper al

vibrational levels also implies that the energies E and G are the same and are |

Iclose to the dissociation energy. In the region of the flow for which vibra-

tion-dissociation coupling is significant the values of e are small compared
I

with the dissociation energies. For this reason the last two terms of eq. 2.1511

were not included in the expression used to obtain computer results. The

error introduced into eq. 2.151 by this omission is less than 30% in the

coupled dissociation rate, considerably less than other uncertainties

(factor of 3 or more) in these rate coefficients.
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2.4 RADIATION PROPERTIES

A computer program has keer_ _:ritue:_ u__da_ C.:i_ _uudy _c cc,.:_u_,_

_ie radiatio._ fro_ aigh temperature air both at equilibrium and non-equilibrium

conditions. The former is typical of that required for the lower altitude

computations while the latter applies to the high altitude, Case III deter-

mination. The particular electronic transitions considered in this computer

program were dictated by the limits imposed by the two cases under consideration.

In the equilibrium case the temperatures are of the order of 12,000°K, through-

out the gas cap. Several authors such as Meyerott, (2"38) et.al, have indi-

cated at these conditlons the radiation from high temperature air is essentially

all continuum. This contiuum results primarily from electron-ion free-bound

transitions, but also one must consider electron-neutral and electron-ion

free-free transitions as well as the capture of electrons by oxygen atoms.

In the higher altitude case the gas is considered frozen chemically going

through the shock and only the translational and rotational degrees of freedom

allowed to equilibrate. As a result the temperatures behind the shock are

very large, of the order of 65,000°K, and there exists molecular species.

As the flo_ continues in the shock layer the vibrational and electronic degrees

of freedom are excited and the molecular species are dissociated. Thus in

the non-equilibrium radiation it is important that molecular band radiation

is also considered.

I

I
I

I

I

The radiation computer program developed under this study allows

one to compute the radiation from high te_,perature air by all of these pro-

cesses. A preliminary examination of the Project Fire flight _o_ditions

indicated that the densities are sufficiently low that the radiating air will

be optically thin. An exception to this assumption is apparent in the final

analyses as discussed in the next section. Consequently, the individual

absorption coefficients can be summed and the emission computed from this.

The point radiation so computed is then integrated over space to dete_Jine

the local flux, either spectral or total, to a given body location.

For the non-equilibrium case the radiation is computed from

the equilibrium program using the non-equilibrium specie concentrations and

a modification to account for the non-equilibrium concentration of excited

electronic states required in the band radiation determination.
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v' v" transition;
J

_l_r,_, v ' v" = "_ r f N
o v' v" Q" Q'r (Be B")V e-

Following is a detailed discussion of the theoretical equations

used in this computer program, as well as a discussion of the various input

parameters that are involved. In each case the best values which are given

in the literature have been used in this computer program.

2.4.1. Band Radiation

Over the past several years the radiation from air, N 2 and at 02

has been the subject of numerous theoretical and experimental studies. The

results of these studies have indicated that the important band transitions

that should be considered are the following: the 02 Sclmmann-Runge, the

, the N2(2+) , and the N2(I-). The researchNO(_, the NO (_), the N2(l+) 4

done on these band systems has yielded electronic transition moments and/or

f-numbers for these bands which radiate strongly iJL the temperature range

of 4,000 and 9,000°K. Keck, Allen and Taylor (2"39) have recently summarized

the results of these experimental programs and reduced the data in terms

of electronic transition moments. This compilation of data is believed to

be the best available and was used in the computation for the values reported

herein. Since the Fra_k-Condon factors and spectrographic data used in this

study were the same as those used by Keck, Allen and Taylor and the methods

of computing the r-centroid values for the molecules were similar, reference

will only be made to the previously mentioned paper.

The spectral absorption coefficients in electronic band systems

of diatomic emitters have been computed in the past by models that may be

described as the just overlapping line model or a model utilizing a smeared

out rotational structure. Both of these models are discussed by Patch,

Shackleford and Penner (2"40) and are shown to yield the same equations for

the determination of the true spectral absorption coefficient. This equation

is given as follows for a given electronic transition and for a single

he _ (_ +_')
kT ( _6_ _) - r

e qv'v" e kT

2.152

Keck et.al. (2"39) shows that the f-number for Duch a transition is related

to the electronic transition moment by the following expression which is

given as a function of the r-centroid.
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Olvlfv'v" 3 R e a qv'v" 2.153
O

Introducing these quantities into Eqn. 2.152 and noting that the lower state

v" may not be the ground state and thus is related to the ground state

through the Maxwell-Boltzmann distribution, the following equation is obtained

2.154

where f!

_Tr R(_) 2 " -_e/kT
_ = o N _ (2S" + i) e qv' v"

3 R_ e a _ (2 S + I) Qv Qr ' "o B - B
e e

K _- [ ]Pe hc

_e - kTe

!

5 h [ ]= _,o_+ (_ - ,) = , e --
kT v' B - B" _v' v"

e e

(See Figure 3 for a definition of various wave numbers).

In the present work this absorption coefficient was averaged over a 2,000

wave number interval and determined by the following formula

I i + K _ - (i + K _ + K_)e -K&_]_: XL o O J 2. i._5f" /b K z _ _
o

Finally, the total absorption for the given band over the averaged _Jave

number was given as the sum of the individual v'v" transitions

2.4.2. Continuum Radiation

The continuum radiation mechanisms that are considered in this

report are the electron neutral and the electron-ion free-free transitions,

the radiation from the capture from the electrons by oxygen atoms, and the

electron-ion free-bound (deionization) transitions. The first two o£

these mechanisms are particularly important at temperatures of less than

9,000°K for equilibrium air while the last as pointed out by Meyerott eg.al. (2"38)

become predominant at temperatures greater than I0,000 to 12,000°K.
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As in the band systems computations, an absorption coefficient

was computed for each of the radiation mechanisms described above. The

contribution from 0 was obtained from the following formula.

where O" , the total detachment cross section, was obtained from the

measurements of Eranscomb et.al. (2"41) at low energies and the calculated

cross section of Sates and Massey (2"42) at higher energies as reported by

Armstrong, Sokoloff, _icholls, Holland and Meyerott. (2"43) The ion and

neutral free-free transitions were computed using Kramer's formula (E<n. 2.156)

and, in the case of the neutral free-free, the effective charges for the

atoms reported by Keck, et.al. (2"39)

° [i
_= _8 _ m c4_3e (2 11" mkT) "½ [ e-J Z 2 N i 2.156

Again noting that the air is optically thin at all wave numbers, the total

absorption coefficient is obtained by summation.

The continuum radiation from electron-ion free-bound transitions

vas determined by interpolation and extrapolation of the results presented

by Breene, et.al. _2'44)'" For this determination the hydrogenic cross-sections

for recombination as computed by Bates et.al, i2"45)'" were used to determine

the ionization cross-sections (i.e., absorption cross-section) from the

following

2

m Ek c
= x O-

A h 2 _'_ E

Where Ek is an energy term dependent on the frequency of the absorption

edge for the lower electronic level considered. The computed spectral

and total radiation is reported at 10,000 and 25,000°K. It was found

that this radiation could be scaled by the ratio of the product of the

number densities of the species of importance over the wave number range

of interest. Since the temperature range of interest was near the 10,000°K

level in _he equilibrium solution, this temperature was used as a base

and the intensity computed from the following:
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I_._ N+ = I_, N+, 10,000
.86 x 1033

and

fo+l L-I
I_, 0+ = I_}, 0+, I0,000- -

..523 x 1033

where the constants are the products of the equilibrium concentrations at

10,O00°K respectively. The above method was used to simplify the computer

program with little inaccuracy.

The invariance of the free-bound radiation with temperature can

be shown analytically. Breene (2"44) computes the radiation as follows

If we define the equilibrium constant as

[NN+ ] [Ne_ ,._,T3/2 1 fh c _ + E*]

_ is the ener_ of the electronic transition and E is the ener_where h c _t

of the absorbing state above the ground state, and we introduce the partition

function of the absorbing state as

E
T 3/2 _TQ _ e

then

[v] bo-]
hc_t hc

e _ e = -k')r=_

I
I

i

It is apparent from the computations of Breene that the radiation from a

particular radiating state decreases rapidly with wave length; thus

hc
t _., hc_

kT _ kT

Finally it is apparent that the radiation from free-bound transitions can be
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given by

which is invariant with temperature. Although this result is only approximate

for the exact spectral distribution (errors of the order of a factor of 2
were noted at specific wave numbers, the total radiation resultin is essentially I

exact _ith the computation of Breene in the temperature range o _ lO,O00°K to
!

30,O00°K.

2.4.3. Radiative Flux Computations

If we consider only the equilibrium radiation from gases which I

are optically thin at all wave lengths, one can write the rad_._tion per unit i

volume as the following

!

dl =_ dB
d V d_d_ d V d_ d_

where

h c_ I)
d_ = 2hc2_ 3 e -

d V d_ d_ k

-I

is the blackbody intensity and

p hcf)
/_= _/_ ( I - e k_

is the apparent absorption coefficient in terms of the true absorption

coefficie1_t. The absorption coefficient computed using the previously

mentioned absorption models yields the true absorption coefficient. Finally

the total absorption coefficient for all bands and continuum mechanisms (except

deionization) at a given wave number, i.e., over a wave number interval, were

obtained by summing the individual contributions, and the flux determined

from equations. The flux per unit volume is then the sum of the above and

the deionization determinations.

The values of the radiation per unit volume so computed for various

points in the shock layer were then numerically integrated over space to

determine the spectral and total flux to a given body location. The radiation
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to a given point is given by

cos e l

dq = I 2 d V
r

2.157

where i is the volume emission

8 is the angle between the body normal and the line between the

radiating volume d V and the body location

and r is the distance along the latter line.

If one considers the spherical coordinate system _ith its center at the

center of curvature of the body face as shown in Figure 4, Eqn. 2.157 can

be written as (I is not a function of _ because of axisymmetry)

dq = R 2 sin 9 1 (8,R) (R2 - R92 -a) + b cos_

2 Ro [ a + b cos ] 3/_ d 9 d R d _

2 R 2
where a = RO + - 2 R R o coslcos 9o

2.157a

b = - 2 R R sin 9 sin 8o
o

The appropriate limits of _ , R, and 9 are as follows:

= O to _max

where, if R cos (9 + 9 ) < R
o

FR o - R cos 8 cos 80

' _max = arc cos t_ sin 9 sin

if R cos (9 + 8 ) _ R , _ maxo o

R =R to R S
o

= 77-

@=Otoe
max

where 9 = arc cos {__-_--_
max _Ksl

+9
o

Equation 2.157a is numerically integrated using Simpson's rule. It should
be noted that at O = O R = R o, and _ = O, the int:egrar_d of equation 2.157ao'

becomes infinite, but the radiating volume goes to zero (_=_max = 0). Care

must be taken when numerically integrating in the region of this singularity

to avoid numerical errors. To obviate =his problem, integration along the
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ray through this particular body point was not used, but rather the body

point was chosen to be mld-way between mesh rays. Further the effect of

this numerical problem was investigated by varying the proximity of the

ray closest to the singularity and noting the effect on the integration

for a constant value of I. Since the q for this problem should be con-

stant over the body, any variation was necessarily caused by the singu-

larity. It was found that as the body point moves away from a mesh ray

the computed value of q at the mid-point between the mesh rays had

decreased to within 5% of the analytic value for this simple case; thus

the accuracy of this method is assumed to be of this order.

2.4,4. _on-equilibrium Radiation

Some years ago it was noted in observations of the variation of

electron density and of band radiation behind normal shocks i_i air that the

relaxation time to overshoot is roughly the same for both. The time to

decay to equilibrium is also very nearly the same. These early observations

are borne out well by the more recent and more careful studies of the ioni-

zation rise distance behind normal shocks in air by Lin (2"46) and of band

radiation rise distance by Allen, Rose, and Carm_. (2"47) _oting Lin's definitions

ot "ionization rise distance" and "ionization incubation distance" and

examining his detailed electron density profiles, a good approximation for

the "distance to reach peak ionization" is to add the incu ation distance

to the rise distance. The resulting distance, when transferred to a time

in the laboratory frame of reference and compared with Allen's band radi-

ation "time to peak", is in remarkably close correspondence. Over the

velocity range 4.5 < u s < 7 km/sec where the two sets of data overlap

the radiation time to peak agrees with the ionization time to peak within

30%, or better than the scatter of either set of data.

This remarkable coincidence in relaxation times strongly suggests

a close coupling between electron production and excited state production

processes. As noted earlier, the mechanism and rate of production of ex-

cited states of diatomlc molecules has not yet been determined either theoreti-

cally or analytically. However, empirical relations to determine the popu-

lation of excited molecular electronic states can be extracted from the

above experimental data. Although the data is insufficient to lead to a

unique empirical model, the following quite simple approach has been adopted

on the basis of our studies of collisional excitation rates.

-58-



At any point in the non-equilibrium flow field the density of

excited molecular states is computedfrom the already determined ground state
density assuming the ratio to be in equilibrium at the local translational

temperature. This excited state numberdensity is reduced by the ratio of

the local electron density to the equilibrium value at the stagnation point.

This numberdensity is used in computing band emission and absorption coeffi-
cients.

This model correctly predicts the overshoot in N2(I+) band
(2.47)

emission by two orders of magnitude measuredby Allen, Rose and Camm.

It does not introduce the unrealistically large band emission immediately
behind the shock front predicted by a model based on equilibrium excited

state densities with respect to local ground state densities at the local

temperature. The model is quite similar, in its results for normal shocks,
to that given by Allen, Rose and Cac_.k2.47)t. However, it has the advantage

that it can be extended simply to any flow geometry resulting in significant

changes in time scale from that of one dimensional flow through a normal

shock. Note, however, that this model has been formulated for the region

of approach to equilibrium following a strong shock and should not be ex-

tended to the computation of band radiation in an accelerating, rapidly

cooling, flow region.

The model adopted here is open to question on two counts; (i) The

use of the local translational temperature in determining the dei_sity of

excited states, and (2) the use of a linear dependence on electron density

to reduce these densities. The former is justified to some extent hy the

success of the same assumption in the model adopted by Allen, et.al. (2"47)

The latter is partially justified on the basis of the similarity in shape

of the electron density profiles and the radiation profiles prior to reaching

a peak.
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2.5 CONVECTIVE HEAT TRANSFER COMPUTATIONS

Although the percentage of particles ionized is small for Project

FIRE re-entry velocities, the amount of energy invested in ionization is

significant (_15% by a crude estimate). Also, the presence of mobile

electrons with their attendant high thermal conductivity raises the ques-

tion of the effect of electron-borne heat transfer on the overall heat

transfer. For these reasons, attention should be given to evaluation of

the expected accuracy and validity of the correlation formulas used to

calculate convective heat transfer.

The correlation formulas used to evaluate stagnation region heat

transfer are those of Hoshizaki(2_nd Fay and Riddell.t2"49_oshizaki'-

numerically solved the stagnation point boundary layer equations for air

in thermodynamic equilibrium. He used the thermodynamic and transport

properties calculated by Hansen,(2_50_nd--- found that the heat transfer could

be correlated with + 6% by use of a single formula. This uniform dependence

of heat transfer on enthalpy level throughout the ionization regime is at-

tributed by Hoshizaki to a cancelling of effects of decreasing viscosity-density

ratio and increasing wall enthalpy gradient.

Fay and Riddell's(2"4_binary mixture boundary layer analysis includes

only the dissociation process and is therefore not expected to be applicable

in the ionization regime (velocities above 30,000 ft. per sec). However

Hoshizaki found that simple extrapolation of Fay and Riddell's formula,

neglecting any effect of dissociation or ionization on viscosity, gave a

result that agreed reasonably well with his results. Specifically, at a

velocity of 37,500 ft per sec, the Fay and Riddell result thus extrapolated

(with a Sutherland viscosity formula) gives a heat transfer parameter about

10% lower than Hoshizaki's for a highly cooled wall.

Now we have to ask what effect factors not included in these theories

might have in order to assess the overall expected accuracy of the heat transfer

calculations. Also, we should compare these formulas with the available experi-

mental results. We can consider Hoshizaki's formula as the norm or basis in
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our discussion since the agreement with it of Fay and Riddell's formula in

the ionization range is little more than coincidental.

The first things that come to mind are the effects of different

estimates of the transport properties and the effects of non-equilibrium re-

action processes. The effect of different transport properties can be evaluated

by comparing the results obtained by Pallone and Van Tassell(2"5-0using both

Hansen's(2"_transport properties and those of Yos!2"52)In the velocity range

of 37,500 fps, the two calculations differ by only about 8% (Hansen's properties

giving the higher values), although conslderably greater differences occur at

higher velocities. The big factor here seems to be the equilibrium thermal con-

ductivity which Hansen calculates to be considerably above that given by Yos

for temperatures above 10,000°K.

We should note that greater differences than this 8% figure exist

among the various calculations which use the same transport properties. Thus,

Pallone and Van Tassell's calculation for equilibrium air, which also used

Hansen's transport properties, gives a heat transfer parameter about 25%

higher than Hoshizaki's (at 37,500 fps); Cohen's_3)calculation using the

same properties gives a result about 10% above Hoshizaki's.

We also note, somewhat parenthetically, that Fay and Kemp's_'_4)evalua -

tion of equilibrium heat transfer in nitrogen (which will be discussed more

below) agrees almost exactly with Pallone and Van Tassell's result (the one

using the transport properties of Yos) at this velocity (and lies about 15%

above Hoshizaki's result). Fay and Kemp argue, justifiably, that the differences

between nitrogen and air should be small in this velocity range (and this is

borne out by Pallone's calculations). On the other hand, the largely discounted (2"48_'541

calculation of Scala(2_foT equilibrium nitrogen gives results a factor of two

higher than the other calculations.

Considering all these results, then, before looking at the experimental

data, we estimate that Hoshizaki's formula for equilibrium air agrees with the

best estimates of other investigators within about 15% (if we accept Yos' transport

property calculations as preferable to Hansen's). Most likely, Hoshizaki's

formula underestimates the equilibrium heat transfer by an amount of this

magnitude.

But what about possible non-equilibrium effects? The only applicable

non-equilibrium boundary layer solution is that of Fay and Kem#g'54_ho'---con-

sidered nitrogen in stagnation regions with frozen and equilibrium boundary

layers. They found that the frozen boundary layer heat transfer exceeded the
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equilibrium value for velocities above about 35,000 fps. The difference

between frozen and equilibrium appears to be approximately 4% at the 37,500

fps. velocity level, although the difference increases markedly for higher

velocities. The reason for this difference is the appearance of a layer of

atoms in the equilibrium, recombining boundary layer. Because of the relatively

large charge-exchange cross section between nitrogen atoms and ions, this layer

of atoms inhibits or prevents diffusion of ions toward the wall. Since the ions

and electrons are coupled by Coulomb forces, electron diffusion is also

inhibited. As a matter of fact, electron diffusion through atoms is

eliminated in the Fay-Kemp model because they let the ion-atom cross section

be infinite, i.e., no relative diffusion of ions, atoms and electrons occurs

in their model. On the other hand, since no recombination occurs in the frozen

boundary layer, there is a continuous diffusion of atoms, ions and electrons

to the wall. Hence the greater heat transfer for a frozen boundary layer.

Actually, the differences between frozen and equilibrium heat transfer would

be somewhat less than given by Fay and Kemp since the charge exchange cross

section is not infinite, but is (presumably) about an order of magnitude

greater than the neutral-neutral cross sections.

Thus, although non-equilibrium effects are of considerable importance

in ionized boundary layers, the magnitude of the difference between equilibrium

and frozen layers is still small for Project FIRE conditions (too small, in fact,

to be measured in the experiments).

Note should be taken of the fact that Fay and Kemp (and, of course, all

the other investigators) have given no consideration to intermediate-rate or

partial equilibrium processes, the presence of molecular ions, vibrational

non-equilibrium, unequal electron and heavy particle temperatures and non-

equilibrium conditions outside the boundary layer. While it is difficult to

generalize or even predict the direction of change caused by all these effects,

the general effect of non-equal electron and heavy particle temperatures is

qualitatively clear.

As pointed out by Chung and Mullen,(2"_°Jthe_ pertinent parameter to

characterize temperature equilibration is the ratio of the thermal conduction

time (in the electron gas) to the electron-heavy particle temperature equilibration

time. Because of the high thermal conductivity (or low Prandtl number) of the

electron gas, unless elastic energy exchange between the electrons and heavy

particles occurs quickly (high pressures) this ratio will remain small for a

wide range of flight conditions. Thus, the thermal boundary layer in the electron

gas will be thick compared with the neutral thermal boundary layer, i.e., the

effects of the cool electrons near the wall will be felt far from the wall.
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This lower electron temperature will make itself felt in a corresponding

decreased thermal conductivity and an increased tendency toward electron-ion

recombination. (Also, of course, a depressed electron temperature may affect

the rates of other reactions significantly.) Both of these tendencies are in the

direction of lower heat transfer than that predicted by the one-temperature

theories.

Now for a look at the available experimental results. Rose and

Stankevics_ .57) nave presented a summary plot of all available data, along with

the abovementioned theories. In the velocity range of interest, the mean of

the experimental data lie about 20% below the mean of the theories (and about

5_ below Hoshizaki's theory). The scatter in the data is on the order of _ 25%

so definitive conclusions are hard to draw. Also, all of the data are from shock

tubes which have the inherent undesirable feature of heating the gas in a two-

step process (through the incident shock and then through the model bow shock).

Notice that the direction of the deviation of the experimental results

from the theoretical is in the direction indicated by our discussion of unequal

electron-heavy particle temperature effects. Clearly, more analysis and better

data are required. However, the results that do exist tend to establish the

overall validity of the theoretical heat transfer formulae (except for Scala and

Warren's(2"5_. Hoshizaki's correlation seems to agree best with the experimental

data, although for no apparent good reason. Thus, in using his formula, we

are hitting some sort of mean, i.e., we are perhaps 15_ low compared with other

theories, about 5_ high compared with the mean of the experiments. Overall we can

probably say that stagnation point convective heat transfer should be correctly

estimated within + 20% in the velocity range around 37,500 fps at altitudes where
m

low Reynolds number effects are unimportant.

All aerodynamic heating calculations were performed by means of the

Aeronutronic Blunt Body Heating Computer program which contains the stagnation

point methods of both Fay and Riddell (2"49) and Hoshizaki (2"48). Hoshizaki's

solution was applied to both of the specified Project Fire cases since it has

been shown above to be applicable in this flight regime. The heating distribution

over the blunt face is determined by a stepwise solution of Lee's integral equa-

tion (2,60) for laminar flow and by the method of Rose, Probstein, and Adams (2"61)

for turbulent flow. Transition to turbulent flow is based on a pre-selected

momentum-thickness Reynolds number which is calculated by the method outlined in

reference 2.62. The calculated results indicated that turbulent flow will not

occur on the blunt face of the Project Fire re-entry vehicle at either of the

flight conditions considered.
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It is anticipated that separation will occur at the corner and the entire

vehicle afterbody will be immersedin a separated flow field. However, after-

body heating distributions were calculated (Case I) for attached laminar flow.
The attached flow calculations were an extension of the blunt face distribution

using Lees' laminar solution.

2.6 SUPERSONICFLOWFIELD

The solution for Case 1 involves the determination of the heat flux

over the entire body requiring that the flow properties downstreamof the body

corner, that is, the supersonic portion of the flow be computed by the method

of characteristics. Since the expansion at the corner is very rapid it was

assumed that the chemistry became frozen along a ray normal to the body at the

corner, but variations in composition and the resultant frozen heat capacity ratio

along this llne were considered in the frozen characteristic solution.

As discussed previously the flow properties within the gas cap as determined

by the integral relations methods were not accurate enough to serve as the input

to the characteristic solution for the afterbody flow. Instead the initial flow

properties along a ray completely in the supersonic field were determined using

the normal pressure gradients at the shock and the body. The distribution of

flow properties along the normal at a body angle of 0.37 was first found. This

was done by fitting a cubic equation for the pressure distribution using the

computed pressures and the normal pressure gradients at the shock and the body

as shown in equation 2.158.

where

+ c _ + d 2.158

!

a =ps + PB " 2(Ps " _B )

b: s- " "
u!

c = PB
--2

d =P B and _' = _) _L-__

R

In addition it was assumed (_ v) varied linearly along the normal to the body.

Coupling this with the energy equation and the equation of state (i.e., equation

2.46 and 2.160), the pressure, velocity and density distributions along the normal

were determined.

q2 + h = 1 2.159

RT
_£o

= _MW 2.160

In order to find the location of a body point at which the velocity was slightly

supersonic a Prandtl-Meyer expansion was taken around the corner to a Mach of 1.25.
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The new input line, which was completely in a supersonic region, was then

chosen as the straight line connecting this body point and the shock point at a

body angle of 0.37 radians. The flow property distributions along this new input

line were then computed by a constant _ stream tube expansion from the original

data on the 0.37 normal. By this method all flow conditions were prescribed at

intervals between the body contour and the shock along a ray that was entirely

supersonic. At each data point on this line the equilibrium concentrations were

determined and from them a value of the heat capacity ratio, _ .

Using such input line a simple characteristics program was developed

to compute the properties for a frozen expansion over the afterbody taking into

account a variation in _ along the input line. The flow equations are referred

to Cartesian coordinates in x and y with x along the axis of symmetry and y normal

to the axis. The origin is taken at the nose of the body. The flow variables

and the values of _ are given at points S, 1,2,3, --- through B along a ray which

is completely supersonic.

The method of characteristics enables one to find flow conditions on

a new data line, further in the supersonic region, by determining conditions at

intersections of characteristics through interior points 1,2,3, ..... and at a

new shock point and new body point. First, consider Figure 5 which shows two

interior points 1,2 on the initial line. The conditions at the point of inter-

section 3 of the - characteristic through 2, the + characteristic through i are

determined using relations along the streamline segment 3,4. The equations of

the characteristics are

dy = tan (_
dx _) 2.161

where @ is the angle between the velocity vector and the x-axis and/_ is the

Mach angle.

difference relations:

y3 - yl = _tan (01 - _i)I (x 3 - Xl)

I

To determine the position of point 3 eq. 2o161 is solved as simple

2.162

Next the pressure and flow direction are calculated at point 3. The compatibility

equations are

_dp d@ + = 2.163¥ sin_ sin0 dx 0

p q ycos(0

Equation 2.163 can be expressed as simple difference relations along 1,3 (upper

sign) and 2,3 (lower sign). Thus
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-
_lql

and

sin/_isin_ 1

(03 - _i) + YlCOS(O 1 . /_i) (x3 - Xl) = 0

cot_2 sin_2sin8 2

---- 2 (P3 " P2 ) + (@3 " @2 ) + Y2COS(@2 +_2 ) (x3 - x2) = 0
_2q2

These determine P3 and @3 .

2.164

2.165

The streamline through 3 (inclined at 83 to the x-axis) is drawn back

to intersect the initial llne at 4. The values of x4,Y 4 are found from

Y4 " Y3

x4 - x3 tan_ 3

Y4 " Y2 Yl " Y2

x4 - x2 x I - x2

2.166

and _4' e 4' _4' a4' and 14 by linear interpolation between the values at i and 2.

Since _ 3 = _4' points 3 and 4 being assumed to be on a streamline, _3' a3' q3'

and _3 can be determined from the following relations:

B

3 = (_)i/_3 2.167

2  3P3
- -- 2.168

a3 _3

+ - " 0 2.169

_ arc sin a3/q 3 2.170

This procedure gives a first estimate of conditions at point 3.

Improved values are then found by applying a mean difference process.

The values of x3,Y 3 are found from the mean difference relations

y3. y2 = ½ {tan(82 + _2)+ tan(@_ i) +_3(i))I (x 3 - x2) 2.171
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where (i) denotes values found by the previous intersection. Equation 2.163

is solved as mean difference relations along 1,3 and 2,3 such that

(i)

/c°_l_ + c°t_&&3

%[ _lql2 6 (i):(i)
3 _3

(F3- _l > " (%"
l sin_ isin@ 1

and

+

(i) (i) ._i))Y3 c°s(@3

i (i)

V +
4)2.- ..(i)_(i)

_2_" _3 q3

(x 3 - Xl) = 0

2t (P3 - _2 ) + (03 " I sin2M2sinO 2@2 ) + ½ Y2COS(@2 +_2 )

2.172

+
(i) (i) t

sin_3 cose 3
(i) .^(i) .. (i). (x3 " x2) = 0

Y3 c°stu3 t/_3 )

The location of point 4 is thus found by

i Yl " ,Z4

x2)' Y4 " Y2 = (x 1 (x4 x2)I
Again P4' _ 4' _' a4' and _4

I

xltan@ 2 - x2tanO I + x4(tan81 - tan02)

tan@ 4 ffi Xl - x2

are determined by linear interpolation and

_3' a3' _3' and _ 3 by relations connecting pt. 3 with pt. 4.

and 2.168 determine _ 3 and a3; _3 is found from

2.173

2.174

Equations 2. 167

(%. L>(_:_:+__i>+ (::i>+_4>(:3_ :4>= 0
#3 94

2.175

Equation 2.170 then determines_3.

The whole mean difference process can now be repeated using the revised

values of quantities at point 3. The iteration is continued until the differences

between values at the beginning and end of an iterative cycle are negligible.
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The procedure at a shock point varies in that the new properties are

found from the solution of the - characteristic of the last internal point and

the shock relations.

In Figure 6 point S is a known point on she shock and point 2 is an

adjacent internal point. Point 3 is found as the intersection of the shock

tangent at S and the characteristic tangent at 2. Equation 2.165 and the shock

relation written in difference form as

2Potan_sSeC2@s(@ 3 - @s) = F'(_s)(p 3 - ps 7

where

2 2;.2 . (r- i) + (l+ 17_
O

_-i IF(_) = [M 2 . _+ I ( [+ 17 _ + (_- i)
O

and _= P/P@

are used to compute _3 and 83 (Suffix 0 refers to free stream conditions), jO 3

is determined from the shock relation

a3 is found from

.__ = (_'+ i)_ + (_- I_ 2.176

(¥- 1)_ + (_'+ z)

2

a3 : _3/_fT 3

and M 3 from the relation

M32 Mo2[ (_+ i)_+ ('" i)] - 2(_ 2 -

: + 1)]
l)

2.177

2.178

Hence q3 --M3a3 and _3 = arc sin (I/M3). The new shock angle is now found

from the relation

M 2sin2e_ ,, (_ + I)_ + (_- 17 2.179
o 2¥

In order to perform a mean difference iteration, equation 2.173 is used with

the following shock equation;

_o[tan@ sec2@ + tan@_l)2 (i)} { ' }sec @3 " + % F' - .s s (@3 @s) (X's)+ F ('/..37(_3 _s) 2 lSO

The procedure at a body point is different in that the intersection of

the positive characteristic from the nearest interior point and the body, a

limiting streamline, is used.
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In Figure 7, B is a knownbody point and i is an adjacent interior point.

C is a new body point where conditions are to be determined°

First, since @cis knownas the slope of the body at point C, Pc can
be found from equation 2.164. (C is the known point of intersection of the

+ characteristics tangent through i and the body). The remaining conditions at

C can then be determined; _C from 2.167 (note that _C = _B) , a3 from 2.168

and qc from Bernoulli's equation. This can again be improved by a mean difference

process using equation 2.172.
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2.7 LOW REYNOLDS NUMBER EFFECTS

A group of effects appear and require consideration at high altitudes,

i.e., when the Reynolds number drops below the values where separation of the

shock layer flow into distinct Inviscid and boundary layer regions is clearly

permissible. These effects have been studied since 1954, when Ferri and

Libby(_)first mentioned the possibility of an interaction between the vor-

ticity generated by shockwave curvature at the nose of a blunt body and the

surface-shear generated vorticity (the boundary layer). This particular ef-

fect, it turns out, is only one of several effects of equivalent order (al-

though quantitatively the most important one for blunt spheres in hypersonic

flow), The assemblage of effects is frequently referred to as "vorticity

interaction" or, more precisely, as "second order effects".

Consideration of second order effects is necessary for the high

altitude condition of Project FIRE for two reasons. First of all, the con-

vective heat transfer, as calculated from boundary layer theory, is modified

by second order effects. At the Reynolds number associated with the high al-

titude case, this modification might he significant (up to a 30_ increase by

heat transfer rate according to some theories). Secondly, the thickening (at

low Reynolds numbers) of the region wherein viscous and heat conduction ef-

fects are important (which is the basic reason for the breakdown of the inviscid

flow-boundary layer distinction) causes a significant region of temperature

and density gradients. Estimates of gas-cap radiation, which ordinarily are

based on properties determined by an inviscid-flow field solution, may be

significantly in error if a substantial part of the gas cap is affected by

the presence of the highly-cooled wall. It is noted at the outset that, in

our situation, the second order effects are augmentive to convective heat

transfer and (ordinarily) attenuative to radiation heat transfer. However,

the possible presence of particular important radiating species at lower tempera-

ture prevents generalization of the latter statement.

What we are concerned with here is seen most clearly by following

the procedure used by Van Dyke (2"64'2"65'2"66) and others, i.e., examining the

hierarchy of successive approximations for finding an asymptotic solution to
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the Navier-Stokes equations for viscous flow at large Reynolds number. This

singular-perturbation problem is treated by the method of inner and outer

expansions.(_'6_Two complementary asymptotic expansions are constructed

simultaneously, and matched in their overlap region of common validity.

The perturbation parameter, in order to satisfy the boundary conditions,

is proportional to a negative half power of the Reynolds number and for

the hypersonic case, turns out to be (2°68)

_ M2] w/2[(_ i)
:

for a gas obeying a power-law temperature-viscosity relationship with the

exponent set equal to w.

The outer expansion, valid outside of a region of O(E ) next to

the body is of the form

_(s,n,_ )_'Ol(s,n) + _ _2(s,n) + .....

where _ is any pertinent flow variable and s and n are the geometrical co-

ordinates, say, along and normal to the body surface. The corresponding inner

expansion (valid in the region of 0(@) near the surface) is of the form

i i
_i(s,n,@ )s'_l(S,N) +_2(s,N) + .....

where N = n/E When these expansions are substituted into the Navier-Stokes

equations and terms involving like powers of (E) are collected, the inner and

outer expansions can be matched by assuming that the inner expansion for large

N behaves in the same manner as the outer expansion for small n.

The first approximation in the outer expansion gives the inviscid flow

equations, i.e., the equations which we actually solve (albeit by an approximate

method) in the digital computer program. The second approximation in the outer

expansion gives another set of inviscid equations which describe a perturbed

outer flow past a body whose normal coordinate is increased by the displacement

thickness of the first-order boundary layer.

The first approximation in the inner expansion gives the Prandtl

boundary layer equations, which have been solved in the stagnation region to
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give those heat transfer results which we use and present. The second ap-

proximation in the inner expansion gives a number of additional effects
knownas second order effects. These effects can be identified with longitu-

dinal curvature, transverse curvature, velocity slip at the surface, temperature

jump at the surface, entropy gradients in the (inviscid) outer flow, stagnation

enthalpy gradients in the outer flow and displacement of the outer flow by the
inner or boundary layer flow.

Numerical calculations of the magnitude of all these effects have
been accomplished only by Van Dyke! 2"66) Maslen (2"6_ and Lenard (2"70).Van Dyke (2"71)

points out that both Maslen's and Lenard's matching procedures were incorrect

in that they failed to includ_ the pressure change due to displacement. Ac-

cording to Davis and Flugge-Lotz_2"6_Lenard's" values have since been corrected

but have not been published as yet. Thus, at the present time, Van Dyke's re-

suits seem best to be used to estimate the relative magnitude of the various

second order effects.

Taking note of the corrections listed in Reference 2.71 (p. 227), Van

Dyke's calculations(2_of the magnitude of second order effects for a highly

cooled sphere at infinite Mach number take the form

Slip &

Ent. Long. Trans. Temp.

Grad. Curv. Curv. Jump

_= I + (0.584

qb.l.

Total

----q---= I + 0.483

qb.l.

0.090 + 0.146 - 0.157)

2.181

where q is the best transfer rate and qb.l. is the corresponding heat transfer

rate calculated from boundary layer theory. While external vorticity is the

dominant effect, it is seen to be not the only one.

Before accepting Van Dyke's result and using it, we should recognize

its limitations and compare it with existing experimental data.

To take note at this point of the absolute magnitude of these effects,

we compute _ for the Project FIRE high altitude conditions to be 0.107

174. Thus the overallbased on a combined Reynolds number Re = U_]_ _ o =

magnitude of the second order effect is about a 5% increase in stagnation region

heat transfer rate, if we accept Van Dyke's results.
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Van Dyke did not calculate the displacement effect because the

displacement thickness was so small for the highly cooled body he considered

(surface-to-stagnation-temperature ratio of 0.2). That this simplification is
generally invalid was shownciearly by Davis and Flugge-Lotz.(2"6_They found

that the pressure gradient associated with displacement can change the magnitude

of the entropy gradient effect by as muchas a factor of two. Fortunately,

they also found that the change is indeed negligible for highly-cooled bodies.

Thus, we can safely ignore the displacement effect for our highly cooled body,

while taking note of the fact that the vorticity interaction effect might be
doubled if a situation exists wherein the body temperature rises to near-

stagnation values.
To compareVan Dyke's result with those of others, we make reference

to the thorough calculations of the vorticity interaction term by Davis and
Flugge-Lotz_'6_and to the review by Van Dyke(2"71)Apart from Van Dyke's, the

other complete analyses of second order effects are those of Lenard(2"_and

Maslen_2"6]) Both fail to include the correct displacement effect, but this

doesn't matter for the case of a highly cooled body. In this case, their

results agree very well with those of Van Dyke. By far the most complete

analysis of the vorticity effect itself was carried out by Davis and
Flugge-Lotz._ "68)They considered a variety of surface-to-stagnation tempera-

ture ratios and demonstrated the importance of displacement-induced pressures

as the temperature ratio increases. Again, good agreement with Van Dyke's

result for a highly cooled body is found. Of the other theories surveyed by
Davis and Flugge-Lotz and by Van Dyke, only those of Ferri, et.al. _2_ and

Cheng_ give significantly different results. The calculations of these

authors give a vorticity interaction effect about four or five times as large

as that calculated by the other authors for Project Fire conditions.

Comparisonwith experiments is something less than conclusive in

resolving this difference because of the differences in experimental data,
no doubt due to the considerable difficulty in making these experiments. A

set of experiments by Hickmanand Giedt (2"_)and additional experiments by

Tong and Giedt_'74) in the University of California low density wind tunnel

(supply air at ambient temperature) give results that agree well with Van Dyke

(and the other authors cited previously whose calculations do not disagree

significantly). The scatter in the data is sufficient to prevent any choosing

amongthese theories and calculations. Eq. 2,181 above fits Hickman's data
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very well, although an estimated re-evaluation of the theoretical result by

Van Dyke_2J_to"-- correspond with Hickman's experimental conditions (lower Mach

number and higher temperature ratio) gives a second order correction low by a

factor of two or three.

Other experimental results were obtained by Ferri, et.al. (2"72) in a

hypersonic wind tunnel wherein the supply air was heated to a temperature of

2300°R. Ferri, et.al.'s, results agree with their theory, which as already

mentioned, gives an effect about five times as large as that expressed by

eq, 2-181. However, the theory of these authors includes only the

vorticity (entropy gradient) effect. Thus, it seems coincidental that their

experiments (which necessarily include all second order effects) agree with

their theory.

To summarize these comparisons, then, there are two distinct sets of

theories and experiments. One assemblage gives a second order increase in

convective heat transfer of about 5% for high altitude Project FIRE conditions;

the other set predicts an increase of 25-30%. The stronger theoretical founda-

tion of the former results leads us to preference of this estimate. Perhaps

the results of the Project FIRE experiments will settle the disagreement

conclusively.

However, careful note must be taken of the fact that real gas ef-

fects (in the form of vibrational non-equilibrium) might be present in the

experiments of Ferri, et.al (2:72). Also, note that all available treatments

of second order effects apply to perfect, non-reacting gases. Surely, real

gas effects will be abundant in the Project FIRE experiments. The convective

heat transfer can be affected not only by the real gas constitutents, per se,

(i.e., through modified transport properties, species gradients, surface re-

actions, etc.) but also because of a new and apparently unconsidered effect,

reaction-generated vorticity. Finite rate reactions generate entropy (at a

rate proportional to the square of the deviation from equilibrium and inversely

proportional to the reaction relaxation time). By Crocco's theorem, reactions

also generate vorticity. This vorticity then can interact with the surface-

shear generated vorticity in a presently undetermined fashion. These con-

siderations make the Project FIRE heat transfer data at the same time more

interesting and more difficult to analyze and interpret.
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So far, we have considered only the effect of low Reynolds numbers

on convective heat transfer. As mentioned earlier, the effect of wall cooling

may modify the radiative heat transfer to a significant extent. We can

estimate the approximate physical extent of the region of important viscous

effects by noting that, if the shock layer thickness is of order unity, then

the first-order boundary layer thickness is of order (_) and the shockwave

thickness is of order (_2). (For reference, the perfect gas shock layer thick-

ness is about 7% of the body radius for the conditions of the high altitude

case). Thus, we are considering a situation just about at the boundary between

Probstein,_6_37) Nvorticity interaction" regime and the "viscous layer"

regime. The shockwave is reasonably well approximated as a discontinuity; the

region of viscous effects is large for the boundary layer approximation, yet

small enough that an essentially inviscid region does exist in the shock layer.

To get a semi-quantitative estimate of the temperature profile, we

can use the viscous layer calculations of Ho and Probstein (2"_) or Levinsky and

Yoshihara_ 2"79) These authors use the Navier-Stokes equations in a form

simplified by the primary assumptions of a thin shock layer (compared to

body radius) and local flow similarity. The resulting system of ordinary

differential equations are integrated numerically with either free stream (2"79)

or behind-the-shoc_ (2"_) outer boundary conditions.

Estimated temperature profiles, obtained by interpolating and

extrapolating in the plotted numerical results of these authors, are

shown on Figure 8. Generally good agreement between the two results is

found, at least good enough to permit estimates of the resulting modifications

in shock layer radiation. Again, it should be noted that these results are for

a perfect, non-reacting gas. Comparable profiles for real gases remain to be

determined.
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3. DISCUSSION OF RESULTS

The methods discussed in Lhe preceding section were used to compute

the convective and radiative fluxes to an Apollo configuration at two points

in its re-entry trajectory. These points were specified to be at 171,111 feet

and 34,582 ft/sec and 259,.113 feet and 37,439 ft/sec, altitude and velocity

respectively and both at zero angle of attack. The input parameters corresponding

to these conditions are given in Table III. Also given were the exact con-

figurations of the vehicle at the two positions as shown in Figures 9 and i0.

These computations are referred to as Cases I and III respectively and as shown

in Section i, Case I is essentially in equilibrium while Case III is essentially

in non-equilibrium.

The results of the computations for Case I and Case III are shown in I

l
the appendix. For each case the thermodynamic and chemical state of the case is

defined as a function of position in the shock layer and the resulting heat flux i

ldistributions, both convective and radiative, are shown. These results were ob-

tained using the methods described in Section 2. Sharp corner sonic point
|

boundary conditions were used in both cases. The smooth corner saddle point I

boundary condition was initially utilized in the Case I solution, but the sonic

be so close to the change in body curvature at the corner, I

m

point was found to

that the sharp corner convergence scheme, which is more rapid and hence more

economical than the saddle point scheme, was used. In each instance figures I
!

describing the coordinate system used are included. Following is a discussion

of the more important features of these results.

3.1 Case I - Equilibrium Flow

The shock layer thermodynamic properties, pressure (Atm),

temperature (OK), and density (gm/cm 3) as obtained from the first approxi- 1

mation solution are presented graphically as a function of the body

coordinate s, n (see Fig. 14) in Figures 16, 17 and 18 respectively, is

noted previously in Section 2.l,the first approximation solution gives

directly the shock and body properties, but only satisfies the conservation

equations across the shock layer on an integrated or mean basis. Thus,

when the shock layer properties are determined from the integral relation

approximations, some deviation from a higher order direct or inverse solu-

tion would be expected. As far as it is known there are no inverse or

direct sharp corner blunt _ody thermochemical equilibrium solutions in

the literature with which to compare these results. The reported res_its

have been compared with an M m = 19.3_ inverse equilibrium spherical %od_

result (3.1) and with Lees' survey results in reference 3.2. The property
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distributions follow the inverse solution results throughout most of the

flow field, but deviate from the inverse solution in the stagnation point

and sonic regions. The linear property distribution found in the stagnation

region is slightly in error since it can be shown that if the velocity is

linear in this region (the inverse solution gives a linear velocity and

Lees predicts this result), the slope of the pressure and density curves

should approach zero at or near the body. The Case I property distribution

errors introduced by the first approximation solution are very small, however,

because the properties along the stagnation streamline do not vary much

from the shock to the body.

The first approximation property distributions obtained in the

region of the rounded shoulder sonic point, although adequate for radiation

calculations, were not accurate enough to start the characteristic solu-

tion. This deficiency was alleviated by replacing two of the integral

relation approximations by the exact normal momentum equation and the

energy equation. This alternate method is discussed in Section 2.6.

Before leaving the discussion of the shock layer properties,

several points should be mentioned. At the Case I velocity and altitude,

i the shock layer density and temperature are such that the gas is essentiall_
completely dissociated and is about 7% ionized on the axis and 1% near

the corner behind the shock. Hypersonic flow theory (3"3) " shows that the

i density ratio across the shock is only a function of _ . Since, as the
shock becomes more oblique, the temperature decreases and thus the degree

of ionization decreases, the _ varies with body angle for this case.

It be shown that the effect of is
can temperature dominant and decreases

thus the increasing density ratio (aee Fig. 18 ) as a function of body angle.

The final feature to be noted is that the shock is nearly concentric with

the front face of the body as would be expected for the high Mach number

i flow of this problem.

The pressure, t_erature and density distributions along the

I body which were used in the convective heat transfer solution are given
in Figures Ii, 12, and 13. An examination of the pressure distribution

in Figure II indicates the strong influence of the sharp cornered shoulder

I on the pressure and, hence, all the property distribL;tions. The equilibrium

pressure distribution on spheres (in contrast to sphere caps with sharply

shoulders s_ch as the Case I geometry) has been calculated at h_'per-
rounded

sonic velocities \ _oth inverse_3.4pt_ and direct methods (3.5, 3.6) and

I
-77=



can be shown to be closely approximated by modified Newtonian solution

with the centrifugal correction. The effect of the sharply rounded shoulder

sonic point on the body properties is to cause a much more rapid decrease

in properties than would be expected in the case of a complete sphere. In

addition to causing a rapid change in body properties, the sharp corner

causes the velocity gradient at the stagnation point to be larger than the

complete sphere and the Newtonian result. Since the stagnation point

heat transfer is proportional to the square root of the velocity gradient,

for a given altitude and reentry velocity, the sharp corner sphere stagnation

point heat transfer is also larger than the complete sphere case. This

result is not unexpected, however, and has been observed experimentally by

Boison and Curtiss (3"7) and predicted theoretically by Probstein. (3"8) In

the sharp corner solution, the characteristic dimension is not the radius

of curvature at the stagnation point as in the Newtonian result, but rather

the distance from the stagnation point to the sharp corner. This functional

relationship between the sharp corner and the Newtonian velocity gradient

can be shown from Probstein's results for a circular disc (3"8) to be

dv II__ . In the first approximation solution the stagnation

d--_-_ s_l_N ewtonian

point velocity derivative was found to be twice the Newtonian value and

hence the heat transfer rate is approximately 40% larger than the Newtonian

prediction. Although the velocity gradient was expected to be larger than

the Newtonian value, the factor of two seems somewhat high (3"7) and may be

due to approximations inherent in the one strip integral relation solution.

The convective heat transfer flux distribution on the blunt face is shown in

Figure 24. The distribution was calculated from Lee's local similarity re-

sults (2"60) which give the ratio heat flux at any point to the stagnation

point value as

__._..vpv sins

qos v sin2s ds

The rather unconventional form of the heat transfer distribution as compared

to a Newtonian results occurs primarily because of the form of the body velocity

distribution obtained from the first approximation solution (see Figure 24a.).
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The fact that the rate of increase of velocity with body coordinate, s,

is greater in the region of the stagnation point than at larger values of

s, rather than constamt_ is assumed in the Newtonian solution, appears to

be the primary reason for the unconventional distribution. Since the

velocity derivative obtained at the stagnation point appears to be some-

what large, the 'bump" in the heat transfer distribution obtained in the

region of the stagnation point is probably exaggerated.

The method of computing the radiative flux shown in Figures 26

and 27 makes use of the assumption that the gas is optically thin at all

wave lengths; however, it is apparent from Figure 27 that integrated intensity

in the ultra-violet would exceed black body if computed accordingly. Thus

self absorption effects are important in this wave length region and should

be considered. Since a numerical analysis of radiation including self-

absorption was not within the scope of this study, a simple approximation

was used, this being that the radiation in this wave length region was

equal to the black body value. This assumption is felt to 5e warranted

in that the path length over which radiation could reach the body is a

small fraction of the standoff distance (approximately 1/6). This distance

is based on an absorption cross section of 10 -17 2cm from Bates, et.al. (3"9)

and a number density of absorbers typical of stagnation conditions (i.e.,

.4 x 1018). The total flux to the various points on the body were corrected

by the same proportion as required at the stagnation point.

It is of further interest to note that since the temperature and

density were essentially constant thro_zghout the gas cap, one could compute

the spectral and total radiative flux to the stagnation point on the basis

of a single point computation. This was done by solving Eqn. 2.157 with

the assumptions of constant intensity and a concentric shock and body relation.

The spectral distribution so computed (using the distribution at the point

at a hod> angle of O.O1 and next to the body) is shown in Figure 27. The

points placed on this curve were computed by the actual volume integration

over the shock layer. The agreement is seen to be excellent.

The solution reported here for the heat flux over the back of the

body is in serious question. In order to allow a characteristic solution

the flow was assumed to be attached to the back of the body. In addition,

the chemistry in the inviscid field was assumed frozen at the corner

and the gas immediately behind the shock was assumed to be in a pseudo

equilibrium. By this is meant that the _ for the shock was set equal to
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1.13, which is the value of the _ for the equilibrium gas behind the

shock at the corner, and the composition was held frozen with respect to

the corner values. The effect of each of these assumptions on the con-

vective and radiative fluxes is considerable.

The assumption of attached flow seems to be in error but no

direct analytical or experimental information is available. A separation

at the corner may be affected by two mechanisms, by the inability of the

inviscid flow to expand sufficiently rapidly, or by a viscous boundary layer

effect caused by the steep external pressure gradient. The former can be

evaluated by looking at the maximum Prandtl-Meyer expansion angle and

comparing this to the corner angle. Although this criterion indicates

no separation, experimental data at lower Mach numbers and with helium and

air definitely show a separation with this configuration. (3"I0"3"17) This

might indicate a boundary layer fed separation, the analysis of which is

not within the scope of this contract.

The effect of a separated region over the afterbody would

most likely increase both the convective and radiative fluxes. If one

assumes the separation strea_nline to be in the direction of or closer to

the body flow, Chapman's shear layer stability criterion indicates that

the layer will be laminar over the entire body. Applying Chapman's free

shear layer heat flux approximation, the flux is then about half the flux

computed for a pseudo body having the contour of the separated region.

Since the convective flux is such a strong function of the body density

distribution, manifested by the enormous decrease in convective flux for

the_attached flow case, it is clear that even half the flux for the much

less expanded separated flow may be of considerable importance. Further,

the increased density of the less expanded flow will increase the radi-
2

ative flux by the ratio of _ for a frozen flow and @ for an equilibrium

flow.

The assumptions concerning the chemistry will have a greater

influence on the radiative flux than the convective as the primary change

will be in the number densities of the radiating species rather than the

gas properties of the field. Since the expansion will still be severe

even considering a separated region, the frozen assumption near the body

will be good, but the chemistry of the flow entering through the shock
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beyond the corner will be a shifting non-equilibrium flow from which a

radiation overshoot may exist due to band radiation. All of these effects

are difficult to evaluate without a better analysis of the separated flow

region which is not within the scope of thisstudy.

As indic,ted, the flow over the afterbody was computed using the

above assumptions and from this the convective flux computed by continuing

the boundary layer analysis around the corner. Because of the serious un-

certainties in the flow field conditions, it was felt that only an estimate

of the radiative flux was warranted. For this purpose a point on the after-

body just beyond the small radius section was considered. The radiation

from a right cone having an altitude normal to the body and extending to

the shock was computed as follows. Consider the flux equation and Figure 28.

cos 0

dq = I 2 d V = I cos 8 sin e dr de d_
r

By a Jacobian transformation to the coordinates of the cone this becomes

dq = I sin g d h d g d_

If we assume I to be a function of h only and relate this to the point

radiation at the corner by the following

I = Icorner ( ,c/rner ) 2

(See radiation discussion and note that the radiation is primarily ion

free-bound) one obtains

0 h

cone i_
q a 2_ sin 8 d8 (h_dh

corner
• • h

corner
o

The final integral was found graphically.

Before computing the radiative flux to tile rear of the vehicle

the effect of self absorption had to be considered particularly in the ultra

violet. As was done for the gas cap, the path required to make the absorption

coefficient equal to 2 was computed from the following

Qa N L=2a

Qa' the absorption cross section was obtained from Bates (3"9) and the
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number density obtained from the characteristic solution (a value near

the body was chosen). The result showed a maximum path of 0.3 feet, thus

the U-V radiation will be limited by self-absorption. Since the ratio of

visible to U-V radiation is about 1.5, it is clear that only the visible need

be considered in this approximation.

Finall_ using the visible portion of the corner radiation as the

Icorner , the flux was computed as 15 BTU/ft2_se c and is shown in Figure 29.

Again it is well to note the serious uncertainties in both the convective

and radiative flux over the afterbody.

3.2 Case III - Non'ERuilibrium Flow

The state of the gas at various points on the body and shock is

shown in Figures 30, 31 and 32. These results were obtained using the integral

relation solution previously discussed which makes use of the assumption

that only the translational and rotational degrees of freedom equilibrate

through the shock but does allow the integration of vibrational and

chemical rate equations along the body. Previous to running the complete

solution, an equilibrium solution for Case III was obtained in order to

compare the available chemical reaction rates at the temperature and density

of the flow with the rate required to maintain the equilibrium. This comparison

indicated that the flow along the body was essentially frozen at the stagnation

point equilibrium composition and thus this additional assumption was used

in the reported solution to reduce the cost of the computation of the shock

and sonic point locations which are found by iteration.

Based on this frozen solution for the shock and body the streamlines

were located within the shock layer and the chamical rate and flow equations

integrated along streamlines to determine the state of the gas. The integration

results showed that the normal gradients in the layer were very non-linear

as evidenced in Figure 35. The velocity component normal to the normal was

found to change little between the shock and the body and thus the assumption

of linear _v seems to be questionable. A more accurate answer might be

obtained by a multiple strip method or a more appro[riate choice of "body

conditions." Since the density gradient near the body is ver_ steep, one

might choose a point just outside the body as one of the limits in the

linearization without greatly changing the problem. In essence, this would

-82-



I

I

I

I

I

i

be a two strip approximation in which the inner (near body) strip is negligible

in size. The very steep gradients of specie composition near the body further

substantiate the assumption of frozen chemistry over the body. It is apparent

that at the temperature and densities of the problem the velocities (i.e.,

the reciprocal of the time scale) must become very small to allow the

chemistry to approach equilibrium.

Two solutions for the distribution of the state properties along

the body were obtained. The first solution utilized the first approximation

integral relation form of the @-momentum equation (see p. 28). The con-

verged solution indicated that there was a slight increase in density with

increasing body angle over a portion of the subsonic flow field. Since the

subsonic flow on the body is isentropic with frozen chemistry, the density

should decrease with increasing body angle. The source of the problem

was found to be the inaccuracies introduced by the first approximation

@-momentum equation. When this equation was replaced with the Bernoulli

equation, which is exact along the body streamline, the more reasonable

density distribution shown in Figure 32 were obtained. The convective

and radiative heat transfer calculations were run before this density

inaccuracy was resolved. The convective heat flux solution was rerun

(Figure 57) with the more accurate body properties and was found to be

approximately 10% lower than the initial calculation. The new flow field

solution should not change the radiation results appreciably, however,

since the molecular collisions occurring in the non-equilibrium shock layer

(3.18)
are primarily binary and the radiation will be independent of density.

The radiation calculation was not rerun due to shortages in time and funds.

In the previous discussion of the Case I solution it was noted

that the convective flux may be somewhat high due to the linear approxi-

It should be noted that these same arguments apply in the Case IIImation.

solution.

The radiation results shown in Figures 59 and 60 were obtained

by integrating the volume emission over space by using the computed volume

emission at i of 1.0, 0.9, 0.75, 0.5 and near the body along various nor-

mals. The choice of these locations was predicated on the assumption that

between { =0.5 and the shock due to non-equilibriumthe flux would peak
U
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band radiation and then be relatively constant from 0.5 to the body. An

examination of the computed results shows that this is the case (see Figure 61).

A point near the body was chosen because of the very steep gradients near

the body which made the radiation from the gas at the body streamline non-

representative of any volume of consequence in the shock layer. In addition,

the radiation at the shock was taken as zero. This assumption is based

on the shock tube results discussed in Section 2.4 and ignores any precursor

ionizatien by ultra-violet radiation. Since the radiation in the ultra-

violet is very small (i.e., very little continuum), the precursor ionization

is expected tO be less than 0.014 and thus negligible.

The non-equilibrium radiation that was determined was found to

be primarily a result of band emission. This is the result of the steep

properties and concentration gradients near the body in that the major

portion of the shock layer is far from equilibrium. The continuum radiation

produced by ion free-bound transitions which dominated at the equilibrium

conditions of this flow is thus produced over a comparatively small volume.

The results obtained have been compared with those of Page (3"18) at the

conditions of this flight and found to be in excellent agreement. Page,

by the use of binary scaling of his experimental results, predicts approxi-

mately 15 watts/cm2; our results show about 6 watts/cm 2. In either case

this flux is small in comparison with the convective flux.

As discussed in Section 2.7, the increase to the convective

heat transfer by second order effects is about 5% based on the best current

theory. Further, the assumption of the viscous effects being limited to a

boundary layer which is small compared to the shock layer thickness seems

to be reasonable for this case. Consequently, the solution reported

herein which is based on a boundary layer solution for the convective flux

and does not correct for viscous effects in the shock layer in computing the

shock volume properties is considered to be adequate.
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Species,

0

N

e-

02

N 2

NO

NO +

+

02

+

N2

0+

N+

TABLE II

MOLECULAR VIBRATION AND DISSOCIATION CONSTANTS

AND HEATS OF FORMATION (0°K)

_O

j
cal/mole

58980

112520

0.0

0.0

0.0

21480

234880

277900

359310

373030

448040

U

v. oj _j
°KJ cal/mole

2335 .039 117770

3541 .032 224815

2786 .037 14_744
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TABLE Vl

CONVECTIVE HEAT TRANSFER DISTRIBUTION

CAS_ I

N X

(ft)

O.i

2

3

4

5

6

7

8

9

I0

II

12

13

14

15

16

17

18

19

20

21

22

23

24

25

-0.0016

-0.0064

-0.0101

-0.0145

-0.0226

-0.0325

-0.0442

-0.0577

-0.0730

Y S QC
(ft) (ft) (Btu/ft2-sec)

O. O.

0.0922

0.1843

0.2304

0.2765

0.3456

0.4147

0.4838

0.5529

759.6330

758.9651

738.1123

711.8413

689.7961

662.5203

646.4972

636.3246

629.2803

623.7497

0.0921

0.1842

0.2301

0.2760

0.3446

0.4130

0.4811

0.5489

0.6163 0.6221

-0.0900

-0.1087

-0.1292

-0.1514

-0.1611

-0.1805

"0.2055

-0.2888

-0.4000

-0.6000

-0.8000

-I.0000

-1.2000

-1.5000

-1.8000

0.6833

0.7498

0.8158

0.8813

0.9830

0.9585

1.0000

1.0310

0.9850

0.8550

0.7250

0.5959

0.4660

0.2711

0.0761

0.6911

0.7603

0.8394

0.8985

0.9223

0.9811

1.0295

1.1184

1.2387

1.4773

i 1.7158
1.9538

2.1923

2.5502

2.9080

619.2725

615.8250

612.2538

607.0268

603.9644

589.4379

441.8734

144.2551

10.5942

7.5002

5.6779

4.6813

4.1437

3.9157

1.5887
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TABLEVII

DISTRIBUTIONOFRADIATIVEFLUXOVERRE-ENTRYBODY
CASt %

SBody,Radians RBod_,Ft QB' BTU/ft2-sec

0 2.6417 323

.025 2. 6417 304

•075 2. 6417 292

•130 2.6417 255

•170 2. 6417 233

.230 2.6417 190

.330 2.6417 93
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TABLE VIII

SPECTRAL INTENSITY OF RADIATION TO STAGNATION POINT

¢A$_ z

QB
-1

O._cm watt-cm/ft 2

0.20000 + 004 .334 + Ol

0.i0000 ÷ 005 .224 + Ol

0.18000 + 005 .134 + Ol

0.26000 + 005 .778 + Ol

0.34000 + 005 .484 + 01

0.42000 + 005 .408 + 00

0.50000 + 005 .216 + 00

0.58000 + 005 .137 + 00

0.66000 + 005 .860 - 01

0.74000 + 005 .558 - Ol

0.82000 + 005 .934 + O0

0.90000 + 005 .830 + Ol

0.98000 + 005 .376 + Ol

0.10600 + 006 .168 + Ol

0.11400 + 006 .735 + O0

0.12200 + 006 .318 + O0

0.13000 ÷ 006 .138 + 00

0.13800 + 006 .672 01

0.14600 + 006 .250 01
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TABLE _[

CONVECTIVE HEAT TRANSFER DISTRIBUTION

CASE IIl

N X Y 8

-- (ft) (ft:) (degrees)

1 O. O. O.

2 0.0001 0.0268 0.5002

3 0.0005 0.0535 0.9998

4 0.0010 0.0803 1.5002

5 0.0019 0.1070 2.0001

6 0.0029 0.1338 2.5000

7 0.0042 0.1605 3.0310

8 0.0057 0.1872 3.5138

9 0.0075 0.2139 3.9752

i0 0.0095 0.2406 4.5007

ii 0.0117 0.2673 4.9941

12 0.0141 0.2939 5.5009

13 0.0168 0.3206 6.5118

14 0.0262 0.4003 7.4953

15 0.0377 0.4797 9.0

16 0.0670 0.6376 11.9980

17 0.1045 0.7937 14.9980

18 0.1501 0.9477 17.5053

19 0.1850 1.0489 20.0

QC

(BTU/ft2-sec)

144.1527

144.1448

144.1211

144.0814

144.0260

143.9547

142.8850

141.8154

141.1936

140.6951

139.9140

139.2037

138.4189

135.2683

132.9333

128.2417

125.6401

123.4432

118.8414
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DISTRIBUTION

e _Radians)

0.0

•04

.06

.12

.20

.28

•321

TABLE XII

CASE III

OF RADIATIVE FLUX OVER RE-ENTRY BODY

RBod_ RB (BTU/ft2-se¢ )

3.0667 5.32

3.0667 5.14

3.0667 5.23

3.O667 5.30

3. 0667 5.19

3.0667 5. O9

3.0667 5.19
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TABLE XIII

CASE III

SPECTRAL INTENSITY OF RADIATION TO STAGNATION POINT

(Cre'l)

O.20000 + 004

0.i0000 + 005

0.18000 + 005

0.26000 + 005

O.34OOO ÷ 005

O.42OOO + OO5

0.50000 + 005

0.58000 + 005

0.66000 + 005

0.74000 + 005

0.82000 + 005

0.90000 + 005

0.98000 + 005

0.10600 + 006

0.11400 + 006

0.12200 + 006

0.13000 + 006

0.13800 + 006

0.14600 + 006

QB (watt-cm/ft2_

•177 - 3

•248 - 2

.313- I

264 + 0

438 + 0

367 1

173- I

241 1

665 4

784 5

781 - 4

145 2

123 2

750 - 3

292 - 2

121 - 2

192 - 3

270 - 4

.382 - 5

-116-
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FIGURE io

STREAMLINE

FIGURE 2.

BODY AND SHOCK GEOMETRY FOR EQUILIBRIUM PROGRAM

RII086

BODY, SHOCK AND STREAMLINE GEOMETRY FOR NON-EqUILIBRIUM

PROGRAM
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MACH DIRECTION ORIGINAL STREAMLINE DIRECTION
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RII087

FIGURE 2a. CASE III GEOMETRY AT CORNER OF BODY
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FIGURE 3.

mio88

ENERGY LEVEL DIAGRAM - D_FINITION OF RADIATION TERMS
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RII089

FIGURE 4. COORDINATE SYSTEM FOR RADIATION INTEGRATION
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FIGURE 16. IIESSURE DISTRIBUTION ACROSS THE SHOCK LAYER, (CASE I)
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FIGURE 17. TEMPERATURE DISTRIBUTION ACROSS THE SHOCK LAYER, (CASE I)
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FIGURE 19. STREAMLINE POSITIONS OVER AFTER-BODY (CASE I)
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FIGURE 20. LOG PRESSURE VSo AXIAL DISTANCE IN FLOW OVER THE

AFTER-BODY (CASE I)
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FIGURE21. TEMPERATUREVS. AXIAL DISTANCEIN FLOWOVERTHE
AFTER-BODY(CASEI)
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FIGURE 28. COORDINATE SYSII[M FOR C0e(PlrrATION OF RADIATION TO BACK WALL
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FIGURE 34. STREAMLINE LOCATIONS IN THE SHOCK LAYER, (CASE III)
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PHILCO CORPORATION

APPENDIX A

FFF- 10 2

ASUBSIDIARYOF<._'_07"C6)0_-/t_

INTRA-COMPANY COMMUNICATION AERONUTRONIC DIVISION

TO: S. Kravitz October 31, 1963

FROM: R. Foster cc: S. Byron

W. Kuby

SUBJECT: Thermodynamic Air Properties for the E.R. Buley

Equilibrium Blunt Body Program

The approximate analytic expressions of the caloric and thermal equations

of state for air required for the equilibrium blunt body have been formulated by

Naumova in Ref. I. The approximate relations give enthalpy, h (cal/gm) and density,

p (gm/cm 3) as functions of pressure, p (arm) (.001 arm • p _ i000 atm) and tem-

perature, T (°K)(to 16800°K). The relative error of the approximate functional

relations to the tabular data of Predvoditelev (Ref. 2,3) is reported to be less

than I_.

The form of approximate functions are different for temperatures above and

below 2000°K. In the temperature range between 2000°K and 16800°K, the polynomial

relationships describing the properties are divided into several temperature

intervals. The required functional relationships are as follows:

i. For air temperatures to 2000°K and pressures between .001-i000 atm,

vo w
h -- T(U + 0 + _ ) + D(A_ + B_ )

e - i e I

where

2n

_" + /(1 +_)2 + a _(p/T)exp(A/T}

m

+ /I + b(l - PI2)fp/T)exp(B/T)

3373
T

AROIW V -177-



R = 0.3530, U = 0°2394, V = 0.06179, W = 0.01657, D = 0.06874, A = 59400, B = 113300,

= 0.21, _ = 0.79, a = 0.0101, b = 0.00252

2. For air temperatures between 2000°K_T_ 16800°K and pressures between

.001 atm t; p _ I000 arm,

p =_/T_R(p,T) =(p/_R M

h= _h

where

RM = I/D(I +_ +,8 + 2b" )

_ = D [(4 +_" +_ + 5_ )T + A_ + B, + 2 C_]

-2--- exp C
= i/ i + c T5/2 ¥ ,

C

C

and

= Z838

= ii00000

= 166500

M N

Z Z mn= Umn x Y
m=O n=O

M N

mnxy
= Vmn

x = (I/3) In p

The po]ynomial coefficients, the exponents and the appropriate value of y(T)

for a given temperature range are given in the following tables.

Values of u at 2000 _ T_6000, y =-2 + O.0005T
mR

0
1

2

3

4

5

0 I 2 3 4 5

1.0153
0.0171

-0°0329

-0.0300

0.0260

0.0176

0 0067
0 0859

0 0363

-0 1994

-0 0448

0 1218

-0.0273 -0.0]79 0.0167 0.0114
-0.0211 -0.1770 0.0075 0.0978

0.1714 -0.0258 -0.1336 -0.0108

0.1620 0.4999 -0.12|3 -0.3126

-0.1321 0.0793 0.]080 -0.0265
-0.1243 -0.3]45 0.1019 0.2055



Values of u at 6000 & T • 12000, y = -3 + 0.0003333T
mn

0 1 2 3 4 5

0 1.0067 0.0052 0.0043 0.0095 0.0085 0.0060

1 -0.0050 -0.0184 -0.0246 0.0368 0.0124 -0.0294

2 0.0062 0.0012 -0.0352 0.0035 0.0412 -0.0191

3 -0.0008 0.0618 0.0356 -0.2320 -0.0243 0.1674

4 -0.0058 -0.0040 0.0571 0.0105 -0.0696 -0.0053

5 0.0035 -0.0444 -0.0343 0.1619 0.0317 -0.1082

Values of u at 12000 • T • 16800, y = -6 + 0.0004167T
mn

0 1 2 3 4 5

0 1.0105 -0.0154 -0.0110 0.0371 0.0052 -0.0255
i 0.0098 -0.0015 -0.0419 0.0105 0.0348 -0.0095

2 0.0000 0.0280 -0.0072 -0.0930 0.0074 0.0719

3 -0.0025 0.0009 0.0220 -0.0078 -0.0256 0.0082

4 0.0014 -0.0076 -0.0012 0.0308 -0.0002 -0.0226

5 0.0001 0.0019 -0.0019 -0.0061 0.0012 0.0053

Values of v at 2000 • T 6 4000, y = -3 + 0.O01Tmn

0 i 2 3 4 5

0 1.0474

1 0.0039

2 -0.0917

3 -0.0113

4 0.0422

5 0.0141

0.0482 -0.0452 -0.0142 0.0293 -0.0022

0.1668 -0.0149 -0.2393 0.0501 0.1098

0.0416 0.2839 -0.2517 -0.1842 0.1841

-0.2471 0.2574 0.3980 -0.2921 -0.1513

-0.0719 -0.1773 0.3054 0.1151 -0.2154

0.1069 -0.1785 -0.1475 0.2047 0.0254

Values of v at 4000 & T 4 6000 y = -5 + O.001Tmn

0 1 2 3 4 5

0 i .0064

1 '" 0.0169

2 -0.0102

3 -0.0153

4 0. 0092

5 0. 0018

-0.0406 -0.0125 0.1517 0.0500 -0.0625

0.0363 -0.1986 -0.2031 0.1541 0.1568

0.0953 0.0916 -0.1934 -0.0901 0.0655

-0.0578 0.II00 0.1604 -0.0779 -0.1081

-0.0148 -0.0390 -0.0004 0.0281 0.0323

0.0120 -0.0129 -0.0184 0.0035 0.0082
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Values of v at 6000• T _ 12000, y = -3 + 0.0003333Tmn

0 i 2 3 4 5

0 1.0265 -0.0052 0.0028 0.0134 -0.0089
1 0.0383 0.0294 -0.0135 -0.0645 -0.0045
2 -0.0125 0.0465 0.0322 -0.0197 -0.0559
3 -0.0132 -0.1051 -0.0744 0.4375 0.0994
4 0.0133 0.0015 -0.0908 -0.0667 0.1219
5 -0.0072 0.0822 0.1065 -0.3216 -0.1207

-0 0137
0 0653
0 0105

-0 3517
0 0590
0 2351

Values of v at 12000_ T • 16800, y =-6 + 0.0004167Tmn

0 1 2 3 4 5

0 1.0330
1 -0.0278
2 -0.0013
3 0o0132
4 -0.0004
5 -0.0062

0 1089
0 0068

-0 0703
0 0080
0 0131

-0 0048

0.0369 -0.1403 -0.0193
0.1431 0.0145 -0.1080

-0.0015 0.2160 0.0051
-0.0720 -0.0229 0.0576
0.0078 -0.0530 -0.0032
0.0217 0.0193 -0.0018

0 0808
-0 0150
-0 1577
0 0128
0 0371

-0 0176
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PHILCO CORPORATION

APPENDIX A (continued)

FFF 105

INTRA-COMPANY COMMUNICATION

TO: R. Foster

FROM: R.A. DuPuis

SUBJECT: Thermodynamic Air Properties for the

Equilibrium Blunt Body

AERONUTRONIC DIVISION

December 27, 1963

cc: W. Kuby

E. Buley

S. Kravitz

The following equations represent the results of calculations made in

response to a request from R. Foster.

The functional relations expressing the thermodynamic air properties

(jo , h, as functions of P and T) for the equilibrium blunt body program have been
presented in a Philco Corporation Intracompany Communication, No. FFF-I02 (Oct. 31,

1963) from R. Foster to S. Kravitz. In reference to these relationships, the

quantities

ah
P'T'

have been calculated and are presented. In order to facilitate future computations,

all partial derivatives have been expressed with respect to P only, i.e.

(_"_P)T only.

The results are as follows.

Case i. For air temperature such that 2000°K _ T, and for pressures between 0.001

and i000 atmospheres,

R(a) ( )T = ¥

(b)
P

((c) = D_A( _-'_F)T + B('-_p)T}( _ P)T

where,
_ al(_ 2 exp (A/T)

ARD 1"/7 V
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and, (_)T = -
b(l -F_2) 2 exp (B/T)

i __:2

fand where, , =_, _ 2
r o_

and,
/'-_7= (1 _V_.2) _

A

Note that _' and/_' are not derivatives, but are defined as

_' = (1 + _q2) + aQ(P) exp (A), and

/._' = 1 + b(1 -_12)(P) exp (B).

(d) (_h.____)p= VO [oeO - {eO - I) i + W _ $ _e_
(e 0 - 1) 2 [ (e _0.

(e_ i)i1)2

+ U + VO + W _ + D A('=_'_)p
(e8 - i) (e '_ - i)

or, substituting for (_TT)P etc., gives,

(-_-_)p : V@ + W e
(e0 - 1)2 (e _

(e 0 - I) (e _ - I) ' " (_)T + Ti ( )T

since, ( _T P
T
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and, (_T)p = - P(B+T)(_P)T'
T 2

The numerical values for ai1 of the constants shown are presented in

the aforementioned memorandum.

Case 2. For air temperatures in the range 2000°K_T_<I6,800°K, and for pressures

ranging from 0.001 atmospheres to i000 atmospheres.

M N

P m- J -_2 r.  oc.

where the expressions for (-_-P)T and ( )T are the same as those shown previously,
and

(a_.a__ = _ _' (i - ir 2)
a paT 2P

M N

(b) ( )p = _ Rut =0 =0 Umn M _. (_}

which, after substitution for (B_TT( o_,_ ,_)_p gives,

(_T)p = _P R_ =0 _oN Umnxmnyn-iK + RR; DL--- _- g--_)T + T2

+_ (5 + 2 TSX _p,T ---_

where K is_ a constant which is a function of the temperature under consideration.

K is as follows:

for 2000°K_T_6OO0°K, K = 0.0005;

for 6000°K_T _12,000°K, K = 0.0003333;
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and for 12,000°K_T_I6,800 K = 0.0004167. /_=,43"42-_B

Tn mx -- _

(c) (_'_)z hM -- --

are again as previously defined.

M N

h = = xmnyn-IK + _R T [(--_-_)p + (_T) P_ c_. _ _o _0Won

_ B (-_T) p+ 5(--_--_)p_+ A(-_TT) P + + 2C('-_'_)p
/ J

After the appropriate substitution for (_T-_-(_'_ '_)
has been made, we have,

M N
_h

(-_--T) = hM _m=--'0n_--OVm_ xmnyn-IK "
P

- /TrP(A+T) _=<
hR L IT 2 (_'P) T +

+ P(_T)(_P)T + 5P C.. c_a_'_.
T2 _ (5 + 2 _)("_-P)T +

APCA+T) , ¢gog. BP(B+T)

T2 _'_)T -F T2

(5 + 2 7)( )T / '

where K is the same temperature dependent constant as that previously defined.
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PHILCO CORPORATION

INTRA-COMPANY COMMUNICATION

TO: E. Buley

FROM: R. Foster

SUBJECT: Equilibrium Properties behind a

Normal Shock and at the Stagnation i
Point of a Blunt Body Using Naumova's

Thermodynamic Property Expression5

AERONUTRONIC DIVISION

March 5, 1964

cc: W. Kuby
M. Holt

S. Kravitz

D. Piper

I. Properties behind the Normal Shock

The equilibrium properties behind a nor_mal shock will be obtained by an

iterative procedure in which _i is assumed and Pl and hI are calculated from the

normal shock momentum and energy equation. The initial value of jo will always beI
assumed to be 6.0 (valid for hypersonic_flow) a_nd subscript _ quantities are given

as input. The equations for calculating Pl and h I are:

- - _ (Ib/ft3)_ (ft/sec) i) (i)

Pl(atm) = p_ (atm) + 68080.184 (i - _oI

hl(Cal/gm) =

-2
qm

9.010876 x 104

where

1 __ (i_)
,°iqw 2

(_---)

qm

(2)

(3)

Ideally, the calculated _1 and _i would then be directly inputed into

thermodynamic property functions and a new estimate of JoI would be obtained. This
new jO. would then be substituted into the normal shock momentum and energy equations

and th_ procedure would be repeated until the iteration gives a jo I consistent to
+0.1%. Unfortunately it is not possible to input h. directly into Naumova_ lqua_i_since

and _ are the independent variables in these functions. Therefore, given h and p, it

is necessary to iterate for T from the equation

= _(_,T)* (4)

This iteration should be accomplished by bracketing the required T by upper and lower

bounds and convergin_ to the final answer by a quadratic interpolation. These upper

and lower bounds on T, if necessary, can be supplied as input.

iSuperscript numbers refer to references on the last page.

*The functions have been programmed and checked out. See S. Kravitz for the program

call sequence.
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Once the T corresponding to the given h and _ is found, T and p are

substituted into the given equation

This new J_- is substituted into equation (3) to obtain Jo i.and _P'i is in turn sub-

stituted into equations (I) and (2) and the procedure is repeated until jo I is con-

sistent to +0.1%.

0 Properties at the Stalnation Point

At the stagnation point, the known thermodynamic prpperties are entropy

(SO = Sl) and enthalpy, h@, where

p T

_r.d #c_- ,¢./.._/,5-_

(6)

where

Po TaD

S_ ffi 1.73500 + (T "_
' 1

1 dT
(T

273.16°K

(7)

Pl TI

1

pw ](atm) Tr2,7KIJ d'

dT (8)

and - 2

qm

ho(cal/gm ) =
9.010876 x 104

(9)

The problem is to find the values of p and T that correspond to the given

E 0 and S0" The first step in the solution is to0bracke_ the actual P-O and T O with

upper and lower bounds. P0 will be slightly greater than Pl and for hypersonic problems,
p^ _ 1.2 p. and hence an upper And lower bound on p^ can be established. An upper and

1Oower boun_ for T O corr,sponding to the ;0 bounds c_n be obtained from the equation

h0 =
in a manner similar to the normal shock calculation discussed in Section 1.

*The functions have been programmed and checked_out. See S. Kravitz for the program

call sequence.
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After obtaining the _o and TO bounds, it is necessary to devise a con-
vergence schemeto find the actual temperature (T) and pressure(p ) at the stagnation
point. There are several possible convergence schemes that might _e utilized and one

scheme suggested by E. Buley is noted here.

Find the mean T and p from their upper and lower bounds using these values

as a first guess for T and p . These values are substituted in the following Taylor

series for S and h in _hich o_ly first order terms are retained.

SO - S(Tq,pq) + _-_ (Tq,pq) - +

where SO and h0 are given and S(Tq,pq) and _ S _ S,  -- areobtainedfrog(6)

_h _h

and h, q}--_ , _--_ are already programmed.*

Therefore we have two linear simultaneous equations for T and p_ which can be solved

simultaneously to obtain the next guess for pressure and _empera_ure. The iteration

procedure is repeated until P0 and T O are consistent to +0.1%.
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*The functions have been programmed and checked out. See S. Kravitz for the program

call sequence.
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